

High Voltage Surge Arresters Buyer's Guide

Table of contents

Product informationIntroduction3Definitions4Simplified selection procedure7Design features - Porcelain-housed surge arresters, EXLIM15Design features - Silicone polymer-housed surge arresters, PEXLIM17The PEXLINK concept22Quality control and testing28

Technical information

Zinc oxide surge arresters with silicone polymer-housed insulator:	
PEXLIM R, IEC class 2	29
PEXLIM Q, IEC class 3	36
PEXLIM P-X, IEC class 4	45
PEXLIM P-Y, IEC class 4	52
HS PEXLIM P-T, IEC class 4	59
HS PEXLIM T-T, IEC class 5	65

Zinc oxide surge arresters with porcelain-housed insulator:

EXLIM R, IEC class 2	71
EXLIM Q-E, IEC class 3	77
EXLIM Q-D, IEC class 3	84
EXLIM P, IEC class 4	90
EXLIM T, IEC class 5	98

Accessories:

Introduction	104
EXCOUNT-A	108
EXCOUNT-I	110
EXCOUNT-II	112

Other

rchase order 115

Safe, secure and economic supply of electricity — with ABB surge arresters

ABB surge arresters are the primary protection against atmospheric and switching overvoltages. They are generally connected in parallel with the equipment to be protected to divert the surge current. The active elements (ZnO blocks) of ABB surge arresters are manufactured using a highly non-linear ceramic resistor material, composed primarily of zinc oxide mixed with other metal oxides and sintered together.

Strong focus on quality at all stages, from raw material through to finished product, ensures that ABB surge arresters survive the designed stresses with ease and with good margins. Different dimensions permit a large variety of standard arresters as well as client-specific solutions as regards protection levels and energy capability. This Buyer's Guide deals with high voltage surge arresters for standard AC applications. For other applications, such as series capacitors protection, shunt capacitor protection or DC applications, contact your ABB sales representative.

Product range

Product family	Arrester	Туре	Max. system	Rated voltage 2)	Energy requirement/	Mechanical
	classification 1)		voltage ²⁾		Lightning intensity	strength 3)
			kV _{rms}	kV _{rms}		Nm

PEXLIM – Silicone polymer-housed arrester

Superior where low weight, reduced clearances, flexible mounting, non-fragility and additional personnel safety is required.

Major component for PEXLINK[™] concept for transmission line protection.

10 kA, IEC class 2	PEXLIM R	24 - 170	18 - 144	Moderate	1 600
10 kA, IEC class 3	PEXLIM Q	52 - 420	42 - 360	High	4 000
20 kA, IEC class 4	PEXLIM P-X	52 - 420	42 - 360	Very high	4 000
20 kA, IEC class 4	PEXLIM P-Y	300 - 550	228 - 444	Very high	9 000

HS PEXLIM - High strength silicone polymer-housed arrester

Specially suited to extreme seismic zones.

20 kA, IEC class 4	HS PEXLIM P	245 - 550	180 - 444	Very high	28 000
20 kA, IEC class 5	HS PEXLIM T	245 - 800	180 - 612	Very high	28 000

EXLIM - Porcelain-housed arrester

10 kA, IEC class 2	EXLIM R	52 - 170	42 - 168	Moderate	7 500
10 kA, IEC class 3	EXLIM Q-E	52 - 245	42 - 228	High	7 500
10 kA, IEC class 3	EXLIM Q-D	170 - 420	132 - 420	High	18 000
20 kA, IEC class 4	EXLIM P	52 - 550	42 - 444	Very high	18 000
20 kA, IEC class 5	EXLIM T	245 - 800	180 - 624	Very high	18 000

¹⁾ Arrester classification according to IEC 60099-4 (nominal discharge current, line discharge class).

²⁾ Arresters with lower or higher voltages may be available on request for special applications.

³⁾ Specified short-term service load (SSL).

Definitions

NOTE! The standards referred to hereunder are the latest editions of IEC 60099-4 and ANSI/IEEE C62.11

Maximum system voltage (Um)

The maximum voltage between phases during normal service.

Nominal discharge current (IEC)

The peak value of the lightning current impulse which is used to classify the arrester.

Lightning classifying current (ANSI/IEEE)

The designated lightning current used to perform the classification tests.

Rated voltage (U_r)

An arrester fulfilling the IEC standard must withstand its rated voltage (U_r) for 10 s after being preheated to 60 °C and subjected to energy injection as defined in the standard. Thus, U_r shall equal at least the 10-second TOV capability of an arrester. Additionally, rated voltage is used as a reference parameter.

NOTE! TOV capability of EXLIM and PEXLIM arresters exceeds the IEC requirements.

Duty-cycle voltage rating (ANSI)

The designated maximum permissible voltage between its terminals at which an arrester is designed to perform its duty cycle.

Continuous operating voltage

It is the maximum permissible r.m.s. power frequency voltage that may be applied continuously between the arrester terminals. This voltage is defined in different ways (verified by different test procedures) in IEC and ANSI.

- IEC (U_c)

IEC gives the manufacturer the freedom to decide U_c . The value is verified in the operating duty test. Any uneven voltage distribution in the arrester shall be accounted for.

- ANSI (MCOV)

ANSI lists the maximum continuous operating voltage (MCOV) for all arrester ratings used in a table. The value is used in all tests specified by ANSI. MCOV is less stringent as regards uneven voltage distribution in an arrester.

Temporary overvoltages (TOV)

Temporary overvoltages, as differentiated from surge overvoltages, are oscillatory power frequency overvoltages of relatively long duration (from a few cycles to hours). The most common form of TOV occurs on the healthy phases of a system during an earth-fault involving one or more phases. Other sources of TOV are load-rejection, energization of unloaded lines etc.

The TOV capability of the arresters is indicated with prior energy stress in the relevant catalogues.

Residual voltage/Discharge voltage

This is the peak value of the voltage that appears between the terminals of an arrester during the passage of discharge current through it. Residual voltage depends on both the magnitude and the waveform of the discharge current. The voltage/current characteristics of the arresters are given in the relevant catalogues.

Energy capability

Standards do not explicitly define energy capability of an arrester. The only measure specified is the Line Discharge Class in IEC. Often, this is not enough information to compare different manufacturers and, therefore, ABB presents energy capability also in kJ/kV (U_r). This is done in 3 different ways:

- Two impulses as per IEC clause 8.5.5.

This is the energy that the arrester is subjected to in the switching surge operating duty test (clause 8.5.5.) while remaining thermally stable thereafter against the specified TOV and U_c .

- Routine test energy

This is the total energy that each individual block is subjected to in our production tests.

Single-impulse energy

This is the maximum permissible energy, which an arrester may be subjected to in one single impulse of 4 ms duration or longer and remain thermally stable against specified TOV and U_c .

NOTE! Corresponding values based on $\rm U_{c}$ are obtained by multiplying the catalogue values by the ratio $\rm U_{r}/\rm U_{c}.$

Short-circuit capability

This is the ability of an arrester, in the event of an overload due to any reason, to conduct the resulting system shortcircuit current without violent shattering which may damage nearby equipment or injure personnel. After such an operation, the arrester must be replaced.

The system short-circuit current may be high or low depending on the system impedance and earthing conditions. Hence short-circuit capability is verified at different current levels.

External insulation withstand strength

It is the maximum value of the applied voltage (of a specified wave shape) which does not cause the flashover of an arrester. Unlike other equipment, arresters are designed to discharge internally and the voltage across the housing can never exceed the protective levels. Thus, the external insulation is self-protected if its withstand strength is higher than the protective levels corrected for installation altitude. The standards specify additional safety factors, exclusive of correction for altitude, as under:

- IEC: 15% for short impulses and 10% for long impulses (at sea level)
- ANSI: 20% for short impulses and 15% for long impulses (at sea level)

NOTE! The altitude correction factors are 13% per 1000 m (IEC) and 10% per 1000 m (ANSI).

All EXLIM and PEXLIM arresters fully comply with IEC and ANSI standards for installations up to 1000 m, often with a large margin.

Pollution performance

IEC 60815 defines four levels of pollution (from light to very heavy) and stipulates the required creepage for porcelain housings as indicated in the table here.

Pollution level	Specific creepage in mm/kV (U _m)
Light (L)	16
Medium (M)	20
Heavy (H)	25
Very heavy (V)	31

In the absence of similar standards for polymeric housings, the table also applies at present to such housings. The creepage distance is the length measured along the housing's external profile and serves as a measure of the arrester performance in polluted environments with respect to

Since the mean diameter for all the standard arresters is less than 300 mm, the specific creepage distance is the same as the nominal creepage distance.

SSL

Specified short-term load.

the risk of external flashover.

SLL

Specified long-term load (for PEXLIM arresters this is a declared value based on cyclic loading).

MBL

Mean breaking load

Definitions Transmission Line Arresters

Backflashover

Occurs when lightning strikes the tower structure or overhead shield wire. The lightning discharge current, flowing through the tower and tower footing impedance, produces potential differences across the line insulation.

If the line insulation strength is exceeded, flashover occurs i.e. a backflashover. Backflashover is most prevalent when tower footing impedance is high.

Compact insulation lines

Transmission lines with reduced clearances between phases and between phase and earth and with lower insulation level withstand than for normal lines for the same system voltage.

Coupling factor

The ratio of included surge voltage on a parallel conductor to that on a struck conductor. This factor is determined from the geometric relationships between phase and ground (or protected phase conductors). A value often used for estimation purposes is 0.25.

Energy capability

The energy that a surge arrester can absorb, in one or more impulses, without damage and without loss of thermal stability. The capability is different for different types and duration of impulses.

Keraunic level

Number of annual thunderstorm days for a given region.

Shielding

Protection of phase conductors from direct lightning strokes; generally, by means of additional conductor(s) running on the top of the towers and grounded through the tower structures.

Shielding angle

The included angle, usually between 20 to 30 degrees, between shield wire and phase conductor.

Shielding failure

Occurs when lightning strikes a phase conductor of a line protected by overhead shield wires.

TLA

Transmission Line Arresters.

Tower footing impedance

The impedance seen by a lightning surge flowing from the tower base to true ground. The risk for backflashover increases with increasing footing impedance.

Travelling waves

Occur when lightning strikes a transmission line span and a high current surge is injected on to the struck conductor. The impulse voltage and current waves divide and propagate in both directions from the stroke terminal at a velocity of approximately 300 meters per microsecond with magnitudes determined by the stroke current and line surge impedance.

Simplified selection procedure

The selection is carried out in two major steps:

- Matching the electrical characteristics of the arresters to the system's electrical demands
- Matching the mechanical characteristics of the arresters to the system's mechanical and environmental requirements.

The final selection is reflected in the arrester type designation.

System/arrester parameters

Vocabularv

U _m	Maximum system voltage
Uc	Continuous operating voltage
Ur	Rated voltage
TOV	Temporary overvoltage
Т	TOV strength factor
k	Earth fault factor
U _{ps}	Switching impulse protective level
U _{pl}	Lightning impulse protective level
U _{ws}	Switching impulse withstand level
U _{wl}	Lightning impulse withstand level

Flowchart for simplified selection of surge arresters

Electrical selection

Arrester rated voltage (Ur)

For each system voltage, the tables "Guaranteed protective data" show a range of U_r and maximum continuous operating voltages U_c , all of which are capable of withstanding the actual continuous operating voltage (U_{ca}) with sufficient margin. Hence, the selection of U_r is only a function of the applied temporary overvoltages, TOV, (U_{tov}), taking into account their amplitudes and duration.

TOV are long-duration, mostly power frequency (p.f.) or nearly p.f. voltages, with or without harmonics, generated by system events. The arresters must withstand the heat energy generated by them.

Most commonly, a single or two-phase earth fault leads to a TOV in the healthy phase(s) and also in the neutral of Yconnected transformers. Its amplitude is determined by the system earthing conditions and its duration by the fault-clearance time.

If the earth-fault factor, (k) = U_{tov}/U_{ca} , is 1.4 or less, the system is considered to be effectively earthed. Generally, this implies a solid connection of the neutral to the earth grid. All other forms of earthing via an impedance or a non-earthing of the neutral is considered as non-effective with k = 1.73

For effectively earthed systems, the fault-clearance time is generally under 1 s but it can vary widely among different systems. The catalogues list the values of TOV capability for 1 and 10 s duration after a prior energy stress (as a conservative approach). For other durations or for specific TOV conditions, follow the procedure hereunder:

- Consider each TOV separately.
- From the TOV curves, read off the TOV strength factor (T) for the time corresponding to the fault-clearance time.
- U_{tov}/T gives the min. value of U_r for withstanding this TOV. Choose the next higher standard rating.
- The final choice of U_r will be the highest of the U_r values obtained from the above calculations for each TOV.

System	Fault duration	System voltage	Min. rated voltage
earthing		U _m (kV)	U _r (kV)
Effective	≤ 1 s	≤ 100	$\geq 0.8 \times U_m$
Effective	≤ 1 s	≥ 123	≥ 0.72 x U _m
Non-effective	≤ 10 s	≤ 170	≥ 0.91 x U _m
			\geq 0.93 x U _m (EXLIM T)
Non-effective	≤ 2 h	≤ 170	≥ 1.11 x U _m
Non-effective	> 2 h	≤ 170	≥ 1.25 x U _m

Table 1.

The table gives a minimum value of the arrester rated voltage (U_r). In each case, choose the next higher standard rating as given in the catalogue.

Note: Do not select a lower value of U_r than obtained as above unless the parameters are known more exactly; otherwise the arrester may be over-stressed by TOV.

Energy capability & line discharge class

IEC classifies arresters by their nominal discharge current. For 10 and 20 kA arresters, they are also classified by energy capability expressed as line discharge class (2 to 5) verified in a long duration current test and a switching surge operating duty test. In the latter, the arrester is subjected to two impulses of a given amplitude and duration after which it must be thermally stable against U_c . The "class" figure roughly gives the expected energy absorbed in kJ/kV (U_r) per impulse. As seen in Table 2, the ABB arresters are tested for a much higher energy absorption capability.

Arrester type	Line discharge	Energy capability (2 impulses)	Normal application
	class	kJ/kV (U _r)	range (U _m)
EXLIM R	2	5.0	≤ 170 kV
PEXLIM R	2	5.1	≤ 170 kV
EXLIM Q	3	7.8	170-420 kV
PEXLIM Q	3	7.8	170-420 kV
EXLIM P	4	10.8	362-550 kV
PEXLIM P-X	4	12.0	362-550 kV
PEXLIM P-Y	4	12.0	330-550 kV
HS PEXLIM P	4	10.5	362-550 kV
EXLIM T	5	15.4	420-800 kV
HS PEXLIM T	5	15.4	420-800 kV

Table 2.

Energy capability of ABB arresters: The normal application range is only a guide. Arresters for higher class may be required depending on the specific parameters.

Though the energy capability is mentioned in a different manner in ANSI, the normal range of application as above applies even for ANSI systems.

For specific and special cases, e.g. capacitor banks, it may be necessary to calculate the energy capability as shown in the IEC 60099-5 and other guides.

Protection levels (Upl and Ups)

For insulation coordination purposes, consider the lightning impulse protection level (U_{pl}) at 10 kA for U_m \leq 362 kV and at 20 kA for higher voltages. Similarly, the switching impulse protection levels (U_{ps}) for coordination purposes range from 0.5 kA (for U_m \leq 170 kV) to 2 kA (for U_m \geq 362 kV). The values can be read-off from the catalogue tables or easily computed from Table 3. In the latter case, they must be rounded upwards.

Arrester type	Nom.	U _{pl} /U _r	U _{pl} /U _r	U _{ps} /U _r
	Discharge	at 10 kAp	at 20 kAp	
	current (I _n)			
EXLIM R	10	2.590		2.060 at 0.5 kAp
PEXLIM R	10	2.590		2.060 at 0.5 kAp
EXLIM Q	10	2.350		1.981 at 1.0 kAp
PEXLIM Q	10	2.350		1.981 at 1.0 kAp
EXLIM P	20	2.275	2.5	2.020 at 2.0 kAp
PEXLIM P-X	20	2.275	2.5	2.020 at 2.0 kAp
PEXLIM P-Y	20	2.275	2.5	2.020 at 2.0 kAp
HS PEXLIM P	20	2.275	2.5	2.020 at 2.0 kAp
EXLIM T	20	2.200	2.4	1.976 at 2.0 kAp
HS PEXLIM T	20	2.200	2.4	1.976 at 2.0 kAp

Table 3.

Upl and Ups ratios for ABB arresters

Protection margins

Protection margins (in %), calculated at coordinating impulse currents as per Table 3, are defined as follows:

- Margin for lightning impulses = $((U_{wl}/U_{pl})-1) \times 100$, where U_{wl} is the external insulation withstand of the equipment against lightning impulses.
- Margin for switching impulses = $((U_{ws}/U_{ps})-1) \times 100$ where U_{ws} is the external insulation withstand of the equipment for switching impulses.

Note! ANSI standards refer to U_{wl} as BIL and U_{ws} as BSL.

Margins are normally excellent due to the low U_{pl} , U_{ps} and also that most equipment at present have a high U_{wl} and U_{ws} . However, depending on the electrical distance between the arrester and the protected equipment, the Upl margin is reduced and thus arresters fail to protect equipment that is not in the close vicinity of the arresters (i.e. within their protection zone). The flexible erection alternatives for PEXLIM arresters may be of benefit in reducing the distance effects. Additional line-entrance arresters may help too. For more detailed information regarding this, please refer to publications PTHVP/A 2310E and PTHVP/A 2120en.

Note! The "distance effect" reduction does not apply to ${\rm U}_{\rm ps}$ margin since the front-time of a switching surge impulse is longer.

It is recommended that the protection margins (after taking into account the "distance effect") should be of the order of 20% or more to account for uncertainties and possible reduction in the withstand values of the protected equipment with age.

Should the selected arrester type not give the desired protection margins, the selection should be changed to an arrester of a higher line discharge class, which automatically leads to lower $U_{\rm pl}$.

Note! Do NOT use a lower-than selected (U_r) to attempt improve the margins, as this may lead to unacceptably low TOV capability.

As an additional assistance in selection, please refer to the simplified flow chart at the beginning of this chapter. The varistor column must be suitably housed to withstand long-term effects of the system loading and the environmental stresses.

External creepage distance

IEC 60815 defines the minimum creepage distances for different environmental conditions. Select the housing to give the desired creepage — the same as for the other equipment in the same location. If the creepage demand exceeds 31 mm/kV, please refer to ABB for a special design.

PEXLIM arresters, having a highly hydrophobic housing, are better suited for extremely polluted areas than EXLIM arresters and a lower creepage may be justified in many cases.

Mechanical strength

The maximum usable static and permissible cantilever loading is shown in the relevant catalogues and summarized in Table 4.

Since arresters do not carry any large continuous current, they should be provided with lighter leads and clamps to reduce the static loading. Suspending PEXLIM arresters further reduces the static terminal loading and allows PEXLIM arresters to also be chosen for higher voltages without mechanical problems.

For short arresters, the mechanical strength of PEXLIM approximately equals that for EXLIM. For longer arresters, the lower mechanical strength of PEXLIM arresters can be compensated by using suspended or under-hung erection or by special bracing for upright erection. For details, refer to publication PTHVP/A 2120en.

Arrester type	rrester type Cantilever strength (Nm) Arrester type		Arrester type	Cantilever strength (Nm)		
EXLIM	SSL	SLL	PEXLIM	SSL	SLL	
EXLIM R-C	7 500	3 000	PEXLIM R-Y	1 600	1 000	
EXLIM Q-D	18 000	7 200	PEXLIM Q-X	4 000	2 500	
EXLIM Q-E	7 500	3 000	PEXLIM P-X	4 000	2 500	
EXLIM T-B	18 000	7 200	PEXLIM P-Y	6 000	9 000	
			HS PEXLIM P	28 000	19 000	
			HS PEXLIM T	28 000	19 000	

SSL Specified short-term load. | SLL Specified long-term load. (For PEXLIM arresters this is a declared value based on cyclic loading.)

Table 4. Permissible mechanical loading for ABB arresters

Mechanical test of silicone-housed arrester PEXLIM P.

Neutral-ground arresters

For neutral-ground arresters the recommended rated voltage is approximately the maximum system voltage divided by $\sqrt{3}$. The recommended neutral-ground arresters in the relevant sections are calculated for unearthed systems with relatively long fault duration. The electrical characteristics are identical to standard catalogue arresters with the corresponding rated voltage. For such arresters, U_c is zero and they are not subject to any voltage stress during normal service conditions. The neutral-ground arresters should preferably be of the same type as the phase-ground arresters. For resonantearthed systems with long radial lines special considerations must be taken. A higher rated voltage (20% to 40%) than listed may be necessary.

Type designation

The type designation itself gives detailed information of the arrester and its application. See the figure below. As standard, the arresters are meant for upright vertical erection. For under-hung erection, when desired, the type designation is completed by letter "H" after system voltage (U_m). For other angular erection, please inform us at order.

For non-standard arresters, the type designation will have additional letters for example:

Е	Non-standard electrical data
М	Non-standard mechanical data
Р	Non-standard metal-oxide columns

For under-hung arresters, letter "H" to be added here. Block-type Ur Code Um For transmission line surge arresters, letter "H" to be added here. PEXLIM Q192-XV245 (H) (L) Arrester family Pollution level according to EC 60815. Neutral-ground arresters have an "N" here.

Special applications

Please consult your nearest ABB representative for help in selection of arresters for special applications such as protection of shunt or series capacitor banks, cables and cable-aerial junctions, rotating machines, traction systems, overhead lines, HVDC or for non-standard arrester ratings.

Ordering data for arresters

The following information, at a minimum, is required with your order:

- Quantity and type designation
- Rated voltage
- Type of line terminal
- Type of earth terminal
- Type of surge counter, if any
- Type of insulating base, if any.

(Insulating base is required if surge counter and/or leakage current measurements are desired. One base is required for each arrester.)

Ordering example

Below is a typical example of an order with three PEXLIM arresters and its accessories.

Number	Item
3	PEXLIM Q192-XV245, rated voltage 192 kV
3	Line terminal type 1HSA 410 000-L
3	Earth terminal type 1HSA 420 000-A
3	Insulating base type 1HSA 430 000-A
3	Surge counter type EXCOUNT-A

Note! We recommend that the order form, on page 107, be filled-in and attached to your order to ensure inclusion of all the important parameters and commercial conditions.

Simple selection example

Substation data	
Maximum system voltage	145 kV
Arrester location	Phase-ground
System earthing	Effective
System fault clearance time	1 s
Creepage distance	3000 mm

- 1. $U_{r0} = 0.72 x U_m$ (according to table 1) = $0.72 x 145 = 104.4 \text{ kV}_{rms}$. Select the next higher standard U_r (see "Guaranteed protective data"), i.e. 108 kV_{rms}.
- 2. According to table 2, a common choice selection for 145 kV_{rms} would be a line discharge class 2 arrester, i.e. PEXLIM R. This arrester has a U_{pl}/U_r of 2.59, i.e. U_{pl} of 280 kV_{peak} at 10 kA (according to table 3). With a U_{wl} of 550 kV_{peak} this would give a protective margin of (550/280-1)x100 = 96%.
- 3. This margin appears to be excellent but it must be noted that depending on distance effect and possible insulation ageing, the margin is reduced to only 10% to 15% after taking distance effect into account and depending on the

chosen impulse steepness and amplitude. Thus, it is very important that the arrester is installed as close as possible to the protected object.

- 4. If the margin is considered insufficient, choose a class 3 arrester, e.g. PEXLIM Q with the same rated voltage 108 kV.
- 5. With a required creepage distance of 3000 mm, i.e. 20.7 mm/kV, YH145 (XH145 for PEXLIM Q) housing should be selected.
- 6. The type designation of the selected arrester will then be:

PEXLIM R108-YH145 (or PEXLIM Q108-XH145)

Design features Porcelain-housed arresters EXLIM

The design is based on successful experience of over 70 years, first as gapped SiC arresters, in all climates and conditions all over the world. EXLIM arresters live up to their name: EXcellent voltage LIMiters. The design is robust and well-matched with the other apparatus in substations.

Each arrester is built up of one or more units. Each unit is a porcelain housing containing a single column of ZnO blocks, all individually extensively routine-tested during manufacture, dispersed with the necessary spacers as determined by the electrical design for the arrester. It is necessary, therefore, that the units are series-connected at site in the pre-determined order as marked on the units. Consult the installation instructions supplied with each arrester.

Longer arresters often require (and are supplied with) external grading rings to maintain a uniform and acceptable voltage stress along their length. Operation of such arresters without the grading rings, therefore, may lead to failure and invalidates our guarantees/warranties.

The standard porcelain color is brown but grey porcelain is supplied on request.

Seaworthy packing of the arresters is standard.

Sealing and pressure-relief function

The flanges are cemented to the porcelain and enclose also the sealing arrangement. Please see the figures herein. For satisfactory performance, it is important that the units are hermetically sealed for the lifetime of the arresters. The sealing arrangement at each end of each unit consists of a pre-stressed stainless steel plate with a rubber gasket. This plate exerts a continuous pressure on the gasket against the surface of the insulator and ensures effective sealing even if the gasket "sets" due to ageing. It also serves to fix the column of the blocks in the longitudinal direction by means of springs. The sealing is verified for each unit after manufacture in routine tests.

The sealing plate is designed to act also as an over-pressure relief system. Should the arrester be stressed in excess of its design capability, an internal arc is established. The ionized gases cause rapid increase in the internal pressure, which in turn causes the sealing plate to flap open and the ionized gases to flow out through the venting ducts. Since the ducts at the two ends are directed towards each other, this results in an external arc; thus relieving the internal pressure and preventing a violent shattering of the insulator.

10

Flange cover

Copper sheet

Design features Porcelain-housed arresters EXLIM

Mechanical Strength

The mechanical strength of the housing is defined in accordance with IEC 60099-4. Thus the guaranteed mean breaking load (MBL) is at least 20% above the specified figure for short-term service load (SSL). The insulating base (when supplied) matches the strength of the housing.

The specified long-term load (SLL) should be limited to 40% of the SSL in accordance with IEC 60099-4.

Arresters with mechanical strength higher than listed are quoted on request.

Mechanical loading - Horizontal (cantilever) load

The maximum permissible continuous horizontal load is calculated as the maximum continuous (static) moment divided by the distance between the base of the arrester and the centre of the terminal load.

The continuous current through an arrester is of the order of a few mA. Hence, using a lighter terminal clamp and/or connecting the arrester by a lighter tee-off considerably reduces the demand for mechanical strength.

Installation, maintenance and monitoring

Standard EXLIM arresters are intended for vertical, upright erection on a structure and require no bracing. Special EXLIM arresters for suspension, inverted mounting or other angular erection are available on request. EXLIM arresters are easy to install following the instructions packed with each arrester. Installation does not need any special tools or instruments. Properly chosen and installed arresters are practically maintenance-free for their lifetime and do not need any monitoring. However, if such monitoring is demanded, it is easily performed online by using the EXCOUNT-II with it's built-in features for correctly measuring the resistive leakage current.

Design features Polymer-housed arresters PEXLIM

PEXLIM arresters, using the same ZnO blocks as the EXLIM arresters, match their electrical performance. Silicone as outer insulation material has been used for over 30 years with good results and has been chosen by ABB for arresters as well. It confers the additional benefits of low weight, improved pollution performance, increased personnel safety and flexibility in erection.

Two basic designs

The PEXLIM family of ABB silicone-housed arresters comes in two different designs:

2 6
3

Moulded PEXLIM design			
1 Protective winding	2 Silicone rubber insulator		
3 Base	4 Line terminal		
5 Top yoke	6 ZnO blocks		
7 Fibre glass loop	8 Bottom yoke		
••••••	••••••		

High strength (HS) PEXLIM tube design				
2 Silicone rubber insulator				
4 Line terminal				
6 ZnO blocks				
8 Venting duct				

Design features Moulded PEXLIM design

Design Highlights

Each arrester is built-up of one or more units, which in turn may be made up of one or more modules. Each module contains a single column of ZnO blocks, that are extensively individually routine-tested during manufacture, dispersed with the necessary spacers as determined by the electrical design for the arrester. The modules are standardized into different sizes based on electrical, mechanical and process considerations.

ABB employs a unique patented design to enclose the ZnO blocks of each module under axial pre-compression in a cage formed of fibre glass reinforced loops fixed between two yokes which also serve as electrodes. A protective fibre winding is then wound over the loops resulting in an open cage design for the module. This results in high mechanical strength and excellent short-circuit performance. See the figures hereunder.

Each module is then passed through a computer-controlled cleaning and priming process. The module is then loaded in a highly automated vulcanizing press and silicone injected at a high pressure and temperature (HTV process) to completely bond to the active parts, leaving no internal voids or air spaces.

Individual modules are thereafter assembled into units and routine tested before packing and dispatch.

For satisfactory performance, it is important that the units are hermetically sealed for the lifetime of the arresters. The HTV moulding process under vacuum ensures this by bonding along the entire length from electrode to electrode. There is no air or any gas entrapped between the active parts and the housing. Hence, gaskets or sealing rings are not required.

Should the arrester be electrically stressed in excess of its design capability, an internal arc will be established. Due to the open cage design, it will easily burn through the soft

silicone material, permitting the resultant gases to escape quickly and directly. At the same time, the fibre windings prevent the explosive expulsion of the internal components. Hence, special pressure-relief vents are not required for this design. The fail-safe short-circuit capability is verified in short-circuit tests in accordance with IEC.

Cutaway view of a typical PEXLIM module showing the internal arrangements and the open-cage construction designed to improve both mechanical strength and personnel safety.

Design features High strength (HS) PEXLIM tube design

In special cases with very high demands for mechanical strength, the moulded design may not provide the optimal solution — particularly at system voltages above 420 kV. Instead, what is required is a mix between the features of the standard EXLIM and the moulded PEXLIM designs. The HS (High strength) PEXLIM tube design provides this by offering comparable mechanical strength to EXLIM arresters, but with much less mass. The seismic and pollution performance is in line with the moulded PEXLIM arresters and thus superior to conventional porcelain designs.

Design highlights

The basic concept is the replacement of the porcelain housing used with EXLIM arresters by a fibre glass tube housing onto which the silicone sheds are vulcanized. The metal flanges are integrated onto the tube prior to the vulcanizing process. The internal arrangement and the pressure-relief devices are similar to those for EXLIM arresters.

For satisfactory performance, it is important that the units are hermetically sealed for the lifetime of the arresters. The sealing arrangement at each end of each unit is shown in the figure hereunder and consists of a pre-stressed stainless steel plate with a rubber gasket. This plate exerts a continuous pressure on the gasket against the inner surface of the flanges and ensures effective sealing even if the gasket "sets" due to ageing. It also serves to fix the column of the blocks in the longitudinal direction by means of heavy spring washers.

To maintain the interior free of any humidity, the unit is evacuated after the sealing plate and gaskets are fitted and then filled with dry air at low dew point. Additionally, a small bag of a desiccant is placed in each unit during assembly. Sealing is verified for each unit after manufacture during routine tests.

The sealing plate is designed to also act as an over-pressure relief system. Should the arrester be electrically stressed in excess of its design capability, an internal arc is established. The ionized gases cause a rapid increase in the internal pressure, which in turn causes the sealing plate to flap open and the ionized gases to flow out through the venting ducts. Since the ducts at the two ends are directed towards each other, this results in an external arc; thus relieving the internal pressure and preventing a violent shattering of the insulator. The successful operation of the pressure-relief device is verified in short-circuit tests in accordance with IEC.

Cutaway view of a typical HS PEXLIM unit showing the internal arrangements.

Silicone as an insulator

All PEXLIM arresters utilise silicone for the external insulation. Silicone rubber is highly hydrophobic and resistant to UV radiation and has been shown to be the best insulation (compared to both porcelain and other polymers) based on world wide independent laboratory and field tests. ABB uses special fillers to enhance these properties as well as giving it high pollution resistance, tracking resistance and fire-extinguishing features. The silicone housing is available only in grey color. For additional information, please refer to publication 1HSM 9543 01-06en.

Mechanical Strength

All PEXLIM designs exhibit very high strength under tensile or compression loading; hence it is the cantilever loading that is of interest. To be applicable to different arrester lengths, the loading is given in terms of bending moment in this guide. Furthermore, since standard multi-unit PEXLIM arresters are built with units of equal strength, the bending moment at the base of the arrester is the only figure of interest.

Due to their flexible construction, PEXLIM arresters may exhibit a visible deflection at the line-end of the arrester under maximum loading. Such deflection is limited by our specified value for long-term load (SLL) given in Table 4. This maximum recommended continuous loading ensures that the electrical and/or mechanical functions of the arrester are not impaired in any way, even during long-term cyclic loading. Importantly, the value for specified short-term load (SSL) can be upheld even after such cyclic loading. If the permissible bending moment for a certain arrester appears insufficient for a given loading, consider one of the following methods to reduce the loading demand.

- Use lighter terminal clamps and/or lighter tee-offs for arresters. In contrast to the current capability (and thus the size of clamps and conductors) required for other substation equipment, the continuous current through an arrester is of the order of only a few mA. Hence, using lighter terminal clamp and/or connecting the arresters by lighter tee-offs considerably reduce the demand for mechanical strength.
- Use another erection alternative (suspension, under-hung, etc). Since PEXLIM arresters are very light compared to equivalent porcelain-housed arresters, they permit innovative erection alternatives, which could further reduce the bending moment demands; particularly in the case of the moulded design PEXLIM. Refer publication 1HSM 9543 01-06en. This in turn can lead to the additional benefit of lighter structures with subsequent reduced costs, or even the complete elimination of the need for a separate structure at all.

Pedestal-mounted long arresters with mechanical strength higher than listed may be quoted on request. The line terminal and the insulating base (when supplied) match or exceed the strength of the arrester housing.

Installation, maintenance and monitoring

Standard PEXLIM arresters are intended for vertical, upright erection on a structure and require no bracing. Special PEXLIM arresters for suspension, inverted mounting or other angular erection are available on request.

- There are two standard ranges of the moulded design PEXLIM arresters for the following erection alternatives: Vertical & upright erection mounted on a structure or suspended by the line terminal from a conductor. Such arresters may also be used for "positive" angular erection (above horizontal).
- Vertical and inverted erection for mounting under a structure, e.g. a gantry. Such arresters may also be used for "negative" angular erection (below horizontal).

Since a surge arrester is an active protective device, permanent mechanical loads should always be minimized. Static loads are therefore to be kept relatively low. Dynamic loads by definition are only short term, and hence should not be treated as permanent loads for the sake of dimensioning the mechanical strength of the arrester. Due to their flexible construction, there may be a visible deflection at the lineend of PEXLIM arresters under mechanical load and this may ultimately determine the limit of loading which is able to be applied to these designs.

For connecting arresters to the line, a common solution is to use the same conductor as for current-carrying equipment connected to the same line in order to ensure that the crosssectional area is adequate to cope with full system short-circuit current in the rare case of an arrester overload. However, under normal service conditions, such a conductor is often unnecessarily large and over-dimensioned since the continuous total current through an arrester is of the order of only a few milliamperes. Furthermore, when this conductor is made long and mostly horizontal, the result is undue mechanical loading on the arrester. Connecting the arresters to the line instead by light, vertical and slack tee-offs, can considerably reduce the demand for mechanical strength, without requiring significant deviation from previous methods of connection.

All PEXLIM arresters are easy to install following the instructions packed with each arrester. Installation does not need any special tools or instruments.

The units of multiple-unit arresters must be series-connected at site in a pre-determined order as marked on the units and explained in the instructions that are packed in each case. An incorrect assembly may lead to failure and invalidates our warranty.

The design of long arresters often requires external grading rings to maintain a uniform and acceptable voltage stress along their length. Such rings are included in the delivery of arresters. Installation or operation of such arresters without these grading rings may lead to failure and invalidates our warranty.

Properly chosen and installed arresters are practically maintenance-free for their lifetime and do not need any monitoring. However, if such monitoring is demanded, it is easily performed online by using the EXCOUNT-II with it's built-in features for correctly measuring the resistive leakage current. More information is available in the chapter dealing with accessories.

Transmission line arresters PEXLINK The concept

Both large and small public/private utility owners of transmission systems face a sharpened competitive situation which demands increased availability and reliability of the systems. Consumers have become more demanding as their processes are dependent on constant and reliable energy supply of good quality.

In many countries, it has also been increasingly difficult to obtain permission to build new lines of normal dimensions. Hence, new lines under construction may mostly be "compact-insulation" lines. This, in turn, requires optimal control of overvoltages caused by lightning or switching events. Surge arresters installed along the line or at a few selected critical towers, in this case, may be an attractive solution or a complement to other means.

Improvement in the reliability and availability of a transmission system can be obtained in one or more of the following ways:

1. Duplication of the system (more than one line)

This is a very expensive method and often impractical.

2. Increased insulation withstand.

It can both be expensive and create other problems such as the need for increased insulation of station equipment.

3. Improved footing impedance

Often difficult and expensive, specially in hilly terrain.

4. Shield wires

If the provision was not in the original tower design, it can be expensive to retrofit such shielding. It helps eliminate a large number of interruptions but it is not enough to obtain the now-demaded degree of reliability.

5. Protection of line insulation by surge arresters

Surge arresters connected in parallel with them at selected towers. In this application usually the term line arresters is used. Protection using polymer-housed arresters (ABB type PEXLIM) along with additional accessories for fixing the arresters across the insulators and providing automatic disconnection of the arresters in the event of their being overstressed is called the PEXLINK concept. This method is simple, costeffective and, in many cases, an attractive alternative to the methods mentioned above.

More information on internet

Visit www.abb.com/arrestersonline for viewing the PEXLINK video.

PEXLINK ABB's protection philosophy

ABB's philosophy is to provide protection for line insulation at selected locations by using standard available components. The main item is the gapless silicone polymer-housed arrester, PEXLIM, with metal-oxide (MO) active elements. Such arresters have been used for many years for protection of equipment in substations and hence their protective performance is well-known.

Transmission line arresters, including line discharge class 3 PEXLIM Q arresters and disconnecting devices on earth leads, erected on ESKOM 300 kV system in South Africa.

The low weight permits installation on existing structures and the polymer housing gives increased safety of the line equipment as well as people and animals which may be in the vicinity of the lines during overstress conditions.

With regard to lightning energy, line arresters are exposed to more severe conditions than arresters placed in substations. The latter are benefited by the reduction of surge steepness due to line corona effect and reduction in surge amplitude as the lightning current finds parallel paths through shielding wires, flashover and parallel lines. Thus, it is necessary to ensure that the MO blocks of the TLA are not under-dimensioned from energy and current point-of-view. A computer program is used to determine the optimum number of locations (generally where the footing impedance is high) and to calculate the arrester stresses at each of the chosen locations.

The design permits installation using standard transmissionline hardware normally available locally. The design also permits mounting at different angles based on tower geometry and conductor spacing. If very high availability is desired, a very large number of locations may have to be protected, mainly due to the unpredictable nature of lightning. In such a case it may not be economically justified to select arresters with "sufficient energy capability" and instead a higher failure rate may be acceptable.

To ensure quick, safe, automatic and controlled disconnection of a failed arrester, ABB uses a special disconnecting device with a suitable link, often in the earthing circuit of the arresters.

The earth lead is designed to withstand the short-circuit currents and the disconnecting device is tested to ensure no false operations. Thus, at a failure, the tripped line does not have to be locked-out and attended to immediately.

By moulding the silicone polymer housing on the active MO elements directly, internal atmosphere is eliminated and with it the risk of ingress of moisture which in the past has been established as the major cause of arrester failures in service.

PEXLINK Application

Increased line availability

By locating the PEXLINK on sections of lines with high footing impedance towers and one additional low footing-impedance tower at each end of the section, PEXLINK protects existing shielded and non-shielded lines from abnormal lightning surges (frequent or high amplitudes) and reduces the outages.

The reduced outages are beneficial also indirectly in that sensitive equipment is not damaged and the circuit breakers overhaul interval can be increased. Thus, total maintenance costs are also reduced.

This protection may be used for all system voltages where the stated abnormal conditions exist. Arresters with moderate energy capability are often sufficient. However, the high-current capability must be large and distribution-type arresters may not be suitable.

The diagram shows overvoltages phase-ground generated by threephase reclosing of 550 kV, 200 km transmission line with a previous ground fault. For long EHV lines pre-insertion resistors traditionally are used to limit switching overvoltages. Surge arresters, as a robust and efficient alternative, could be located at line ends and along the line at selected points.

Switching overvoltage control

For long EHV lines, surge arresters usually are located at lineends. In addition, by locating arresters at one or more points along the line e.g. at midpoint or 1/3 and 2/3 line length switching surge overvoltages and thus line insulation requirements could be limited without using preinsertion resistors. Arresters used for this type of application should be designed for high energy capability. Usually a class 2 or 3 arrester will be sufficient out on the line but higher arrester classes may be necessary at the receiving end of the line.

Compact-insulation lines

Arresters placed in parallel with line insulators permit a large degree of compacting of a transmission line with lower rightof-way costs as a result.

Line upgrading

The existing insulation level of a line, when suitably protected by arresters, may be upgraded for service at a higher system voltage leading to greater power transfer without much additional capital cost.

Extended station protection

By locating arresters on towers near a substation, the risk of backflashovers near the station is eliminated. This results in reduction of steepness and amplitude of incoming travelling waves, thus improving the protection performance of station arresters and eliminating the need for additional expensive metal-enclosed arresters even for large GIS.

Substitute for shield wires

In cases where provision of shield wires is not practical physically or is very expensive, e.g. very long spans, very high towers etc, arresters are a good and economical substitute.

Arresters located in all phases on each tower eliminate the need for both shield wires and good footing impedance and may be economically justified in cases where the cost of reduction in footing impedance and the cost of overhead shield wire are very high.

No arresters at all. Lightning stroke to tower number 5

Very high risk for flashover due to high TFI (Tower Footing Impedance) with an earth fault followed by a circuit breaker operation as a consequence.

Lov	v TFI L	ow TFI	High TFI	High TFI	High TFI	High TFI	High TFI	Low TFI	Low TFI
11	ļ								
10									
9									
8	ļ								
7									
6	Normal insulation stre	ength (BIL)							
5									
4					\sim				
3		<u> </u>							
2		<u>_</u>					<u>;</u>		
1									
· .		2	2		, _		-	, ,	
	I	2	3	4	5	6	/	ð	9

Arresters in all 9 towers. Lightning stroke to tower number 5

The overvoltage profile is well below the BIL of the system all along the section. An ideal protection is obtained.

PEXLINK Features

Standard components

The suspension of the arresters is simplified and standard clamps and similar hardware normally available may be used for this purpose. This leads to overall economy for the user.

Arrester type	type Lightning discharge capability				
	as per IEC 60099-4 Annex N				
	Energy	Charge			
PEXLIM R	2.5 kJ/kV (U _r)*	1.0 As **			
PEXLIM Q	4.0 kJ/kV (U _r)*	1.8 As **			
PEXLIM P	7.0 kJ/kV (U _r)*	2.8 As **			

* U_r = Rated voltage

** As = Ampere second

A few examples can be seen in the figures for "Some erection alternatives" on next page.

The disconnecting device is carefully chosen to perform its function only at the failure of the arrester.

The separation of the disconnector is quick and effective and the method of connection advised by ABB in each particular case ensures that neither the disconnected wire nor the damaged arrester lead to any interference with other live parts. Thus, after a failure, the line can be re-charged without attending to it immediately.

The disconnection is easily visible from the ground and thus locating it is simple for the maintenance crew.

Easy to install

The PEXLIM arresters are built-up of optimum-length modules and hence can be easily designed for use on various voltages. They are light and hence easily transported up the towers.

PEXLINK Some erection alternatives

Insulator string Insulator string Surge arrester Surge arrester Earthing cable Earthing cable Disconnecting device **Disconnecting device** Insulator string Surge arrester Insulator string **Disconnecting device** Earthing cable Disconnecting device Surge arrester Insulator string Insulator string Surge arrester urge arrester Disconnecting device **Disconnecting device**

Different arrangements showing how easy it is to install the PEXLINK concept in towers of different design.

Quality control and testing

ABB is certified to fulfil the requirements of ISO 9001

Type tests

Type (design) tests have been performed in accordance both with IEC 60099-4 and ANSI/IEEE C62.11. Test reports are available on request.

Routine tests

Routine tests are performed on ZnO blocks as well as on assembled arrester units and accessories. The most important type tests data is verified on all batches of ZnO blocks, thus verifying catalogue data.

Tests on ZnO blocks

Energy withstand test on all blocks

The blocks pass three energy test cycles with cooling in-between. In each cycle, the injected energy is far in excess of the single impulse energy capability. Blocks with insufficient energy capability are automatically rejected.

Classification of all blocks

The blocks are classified at 1 mA (d.c.) and 10 kA ($8/20 \mu s$) and the residual voltages are printed on each block together with a batch identification. Finally all blocks are visually inspected.

Accelerated life tests on samples

Power losses after 1000 hours calculated from a test with shorter duration (approximately 300 hours) at an elevated temperature of 115 °C at 1.05 times U_c shall not exceed the losses at start of the test. Batches in which unapproved blocks appear are rejected.

Impulse current tests on samples

Blocks are subjected to high current impulses (4/10 μ s) and long duration current impulses (2500 μ s) of amplitudes verifying catalogue data.

Other sample tests

In addition to the above, low current characteristics, protection characteristics and capacitance are checked on samples.

Tests on assembled mechanical units

Routine tests on units fulfil the demands of both IEC 60099-4 and ANSI/IEEE C62.11. Each arrester unit has a serial number as per IEC 60099-4

Guaranteed residual voltage

The residual voltage at 10 kA, $8/20 \ \mu$ s impulse current of each unit is calculated as the sum of the residual voltages for all blocks connected in series in the unit.

The residual voltage of the complete arrester is the sum of the residual voltages for its units.

Tightness check (only for EXLIM and HS PEXLIM arresters)

It is performed by placing each unit in a vacuum chamber connected to a He-spectrometer. Maximum permissible leakage is 0.00001 mbarl/s at a pressure difference of 0.1 MPa.

Power frequency reference voltage

Reference voltage is measured on each arrester unit.

Internal corona

It is checked on each unit at 0.9 times U_r . A steady internal corona level less than 5 pC is required in a pass/no-pass test.

Grading current

It is measured at U_c on each unit.

Power losses

They are measured at U_c on each unit verifying that the thermal performance is in compliance with performed type tests.

Test reports

Routine test reports are filed and are available on request. The reports include reference voltages, power losses and residual voltages.

Tests on accessories Surge counters and monitors

All such devices are routine-tested in a pass/no-pass test before leaving the factory.

Zinc Oxide Surge Arrester PEXLIM R

Protection of switchgear, transformers and other equipment in high voltage systems against atmospheric and switching overvoltages. For use when requirements of lightning intensity, energy capability and pollution are moderate.

Superior where low weight, reduced clearances, flexible mounting, non-fragility and additional personnel safety is required.

Major component in PEXLINK[™] concept for transmission line protection.

Other data can be ordered on request. Please contact your local sales representative.

i

Brief performance data

System voltages (U _m)	24 - 170 kV
Rated voltages (U _r)	18 - 144 kV
Nominal discharge current (IEC)	10 kA _{peak}
Discharge current withstand strength:	
High current 4/10 µs	100 kA _{peak}
Low current 2000 µs	600 A _{peak}
Energy capability:	
Line discharge class (IEC)	Class 2
[2 impulses, (IEC Cl. 8.5.5)	5.1 kJ/kV (U _r)]
Fulfils/exceeds requirements of ANSI transmission-	
line discharge test for 170 kV systems.	
Short-circuit/Pressure relief capability	50 kA _{sym}
External insulation	Fulfils/exceeds standards
Mechanical strength:	
Specified long-term load (SLL)	1000 Nm
Specified short-term load (SSL)	1600 Nm
Service conditions:	
Ambient temperature	-50 °C to +45 °C
Design altitude	max. 1000 m
Frequency	15 - 62 Hz

PEXLIM R Guaranteed protective data 24 - 100 kV

Max. system voltage	Rated voltage	Max. con operating	tinuous voltage ¹⁾	TOV cap	ability ²⁾	/ ²⁾ Max. residual voltage with current wave							
		as per IEC	as per ANSI/IEEE			30/60 µs			8/20 μs				
U _m	Ur	U _c	MCOV	1 s	10 s	0.5 kA	1 kA	2 kA	5 kA	10 kA	20 kA	40 kA	
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	
24 ³⁾	18	14.4	15.3	20.7	19.8	37.1	38.5	40.3	44.0	46.7	52.3	59.7	
	21	16.8	17.0	24.1	23.1	43.2	44.9	47.0	51.3	54.4	61.0	69.7	
	24	19.2	19.5	27.6	26.4	49.4	51.3	53.8	58.7	62.2	69.7	79.6	
	27	21.6	22.0	31.0	29.7	55.6	57.7	60.5	66.0	70.0	78.4	89.6	
36 ³⁾	30	24.0	24.4	34.5	33.0	61.7	64.2	67.2	73.3	77.7	87.1	100	
	33	26.4	26.7	37.9	36.3	67.9	70.6	73.9	80.6	85.5	95.8	110	
	36	28.8	29.0	41.4	39.6	74.1	77.0	80.6	88.0	93.3	105	120	
	39	31.2	31.5	44.8	42.9	80.3	83.4	87.3	95.3	102	114	130	
	42	34	34.0	48.3	46.2	86.4	89.8	94.0	103	109	122	140	
	48	38	39.0	55.2	52.8	98.8	103	108	118	125	140	160	
52	42	34	34.0	48.3	46.2	86.4	89.8	94.0	103	109	122	140	
	48	38	39.0	55.2	52.8	98.8	103	108	118	125	140	160	
	51	41	41.3	58.6	56.1	105	109	115	125	133	148	170	
	54	43	42.0	62.1	59.4	112	116	121	132	140	157	180	
	60	48	48.0	69.0	66.0	124	129	135	147	156	175	199	
	66	53	53.4	75.9	72.6	136	142	148	162	171	192	219	
72	54	43	42.0	62.1	59.4	112	116	121	132	140	157	180	
	60	48	48.0	69.0	66.0	124	129	135	147	156	175	199	
	66	53	53.4	75.9	72.6	136	142	148	162	171	192	219	
	72	58	58.0	82.8	79.2	149	154	162	176	187	209	239	
	75	60	60.7	86.2	82.5	155	161	168	184	195	218	249	
	84	67	68.0	96.6	92.4	173	180	188	206	218	244	279	
	90	72	72.0	103	99.0	186	193	202	220	234	262	299	
	96	77	77.0	110	105	198	206	215	235	249	279	319	
100	75	60	60.7	86.2	82.5	155	161	168	184	195	218	249	
	84	67	68.0	96.6	92.4	173	180	188	206	218	244	279	
	90	72	72.0	103	99.0	186	193	202	220	234	262	299	
	96	77	77.0	110	105	198	206	215	235	249	279	319	

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

 The continuous operating voltages U_C (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. Uc has to be considered only when the actual system voltage is higher than the tabulated.

Any arrester with U_c higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (2.5 kJ/kV (U_r)).

3) Arresters for system voltages 36 kV or below can be supplied, on request, when the order also includes arresters for higher system voltages.

Arresters with lower or higher rated voltages may be available on request for special applications.

PEXLIM R Guaranteed protective data 123 - 170 kV

Max. system voltage	Rated voltage	Max. co operating	ntinuous g voltage 1)	TOV ca	oability ²⁾	Max. residual voltage with current wave						
		as per IEC	as per ANSI/IEEE			30/60 µs	5	I	8/20 µs	1	1	1
U _m	Ur	Uc	MCOV	1 s	10 s	0.5 kA	1 kA	2 kA	5 kA	10 kA	20 kA	40 kA
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}
123	90	72	72.0	103	99.0	186	193	202	220	234	262	299
	96	77	77.0	110	105	198	206	215	235	249	279	319
	102	78	82.6	117	112	210	218	229	250	265	296	339
	108	78	84.0	124	118	223	231	242	264	280	314	359
	120	78	98.0	138	132	247	257	269	294	311	349	398
	132	78	106	151	145	272	283	296	323	342	383	438
	138	78	111	158	151	284	295	309	338	358	401	458
	144	78	115	165	158	297	308	323	352	373	418	478
145	108	86	86.0	124	118	223	231	242	264	280	314	359
	120	92	98.0	138	132	247	257	269	294	311	349	398
	132	92	106	151	145	272	283	296	323	342	383	438
	138	92	111	158	151	284	295	309	338	358	401	458
	144	92	115	165	158	297	308	323	352	373	418	478
170	132	106	106	151	145	272	283	296	323	342	383	438
	138	108	111	158	151	284	295	309	338	358	401	458
	144	108	115	165	158	297	308	323	352	373	418	478

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages U_C (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. Uc has to be considered only when the actual system voltage is higher than the tabulated.

Any arrester with U_C higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (2.5 kJ/kV (Ur)).

Arresters with lower or higher rated voltages may be available on request for special applications.

PEXLIM R Technical data for housings

Max. system voltage	Rated voltage	Housing	Creepage distance	External ins	ulation *)			Dimensio	ons			
U _m	Ur			1.2/50 µs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	В	с	Fig.
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	
24	18-27	YV024	1863	310	150	150	250	13	641	-	-	1
36	30-48	YV036	1863	310	150	150	250	14	641	-	-	1
52	42-60	YV052	1863	310	150	150	250	14	641	-	-	1
	66	YV052	2270	370	180	180	300	16	727	-	-	1
72	54-60	YH072	1863	310	150	150	250	14	641	-	-	1
	54-72	YV072	2270	370	180	180	300	16	727	-	-	1
	75-96	YV072	3726	620	300	300	500	24	1216	-	-	2
100	75-96	YV100	3726	620	300	300	500	24	1216	-	-	2
123	90	YH123	3726	620	300	300	500	26	1236	400	160	3
	96-120	YH123	3726	620	300	300	500	25	1216	-	-	2
	90-96	YV123	4133	680	330	330	550	28	1322	400	160	3
	102-132	YV123	4133	680	330	330	550	27	1302	-	-	2
	138-144	YV123	4540	740	360	360	600	29	1388	-	-	2
145	108	YH145	3726	620	300	300	500	27	1236	400	160	3
	120	YH145	3726	620	300	300	500	25	1216	-	-	2
	108	YV145	4540	740	360	360	600	30	1408	400	160	3
	120-144	YV145	4540	740	360	360	600	29	1388	-	-	2
170	132-144	YH170	4540	740	360	360	600	31	1408	400	160	3
Neutral-	ground a	rresters										
52	30-36	YN052	1863	310	150	150	250	14	641	-	-	1
72	42-54	YN072	1863	310	150	150	250	14	641	-	-	1
100	60	YN100	1863	310	150	150	250	14	641	-	-	1
123	72	YN123	2270	370	180	180	300	16	727	-	-	1
	84-120	YN123	3726	620	300	300	500	25	1216	-	-	2
145	75-120	YN145	3726	620	300	300	500	25	1216	-	-	2
170	75-120	YN170	3726	620	300	300	500	25	1216	-	-	2

 $^{\ast)}$ Sum of withstand voltages for empty units of arrester.

PEXLIM R Technical data for housings

Figure 1

Line terminals

1HSA410 000-M Aluminium flag with other items in stainless steel

1HSA410 000-P Stainless steel

Drilling plans

Without insulating base Aluminium

M12 bolts for connection to structure are not supplied by ABB. Required threaded grip length is 15-20 mm.

Epoxy resin

PEXLIM R Shipping data

Rated voltage	Housing	Number of arresters per crate								
		One		Three		Six	Six			
Ur		Volume	Gross	Volume	Gross	Volume	Gross			
kV _{rms}		m ³	kg	m ³	kg	m ³	kg			
18-27	YV024	0.5	35	0.5	65	0.9	110			
30-48	YV036	0.5	36	0.5	68	0.9	116			
42-60	YV052	0.5	36	0.5	68	0.9	116			
66	YV052	0.5	38	0.5	74	0.9	128			
54-60	YH072	0.5	36	0.5	68	0.9	116			
54-72	YV072	0.5	38	0.5	74	0.9	128			
75-96	YV072	0.7	51	0.7	103	1.2	181			
75-96	YV100	0.7	51	0.7	103	1.2	181			
90	YH123	0.7	53	0.7	109	1.2	193			
96-120	YH123	0.7	52	0.7	106	1.2	187			
90-96	YV123	0.7	55	0.7	115	1.2	205			
102-132	YV123	0.7	54	0.7	112	1.2	199			
138-144	YV123	0.9	61	0.9	123	1.5	216			
108-120	YH145	0.7	54	0.7	112	1.2	199			
108	YV145	0.9	62	0.9	126	1.5	222			
120-144	YV145	0.9	61	0.9	123	1.5	216			
132-144	YH170	0.9	63	0.9	129	1.5	228			

Neutral-ground arresters

		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
30-36	YN052	0.5	36	0.5	68	0.9	116
42-54	YN072	0.5	36	0.5	68	0.9	116
60	YN100	0.5	36	0.5	68	0.9	116
72	YN123	0.5	38	0.5	74	0.9	128
84-120	YN123	0.7	52	0.7	106	1.2	187
75-120	YN145	0.7	52	0.7	106	1.2	187
75-120	YN170	0.7	52	0.7	106	1.2	187

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specifica-

tion. ABB reserves the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

Zinc Oxide Surge Arrester PEXLIM Q

Protection of switchgear, transformers and other equipment in high voltage systems against atmospheric and switching overvoltages.

- in areas with high lightning intensity and high energy requirements.
- where grounding or shielding conditions are poor or incomplete.

Superior where low weight, reduced clearances, flexible mounting, non-fragility and additional personnel safety is required.

Major component in PEXLINK[™] concept for transmission line protection.

i

Other data can be ordered on request. Please contact your local sales representative.

Brief performance data

System voltages (U _m)	52 - 420 kV
Rated voltages (U _r)	42 - 360 kV
Nominal discharge current (IEC)	10 kA _{peak}
Classifying current (ANSI/IEEE)	10 kA _{peak}
Discharge current withstand strength:	
High current 4/10 µs	100 kA _{peak}
Low current 2000 µs	1000 A _{peak}
Energy capability:	
Line discharge class (IEC)	Class 3
[2 impulses, (IEC Cl. 8.5.5)	7.8 kJ/kV (U _r)]
Fulfils/exceeds requirements of ANSI transmission-	
line discharge test for 170 kV systems.	
Short-circuit/Pressure relief capability	50 kA _{sym}
External insulation	Fulfils/exceeds
	standards
Mechanical strength:	
Specified long-term load (SLL)	2500 Nm
Specified short-term load (SSL)	4000 Nm
Service conditions:	
Ambient temperature	-50 °C to +45 °C
Design altitude	max. 1000 m
Frequency	15 - 62 Hz
PEXLIM Q Guaranteed protective data 24 - 123 kV

Max. system voltage	Rated voltage	Max. con operating	tinuous J voltage ¹⁾	TOV capa	pability ²⁾ Max. residual voltage with current wave							
		as per IEC	as per ANSI/IEEE		1	30/60 µs			8/20 µs		1	1
U _m	Ur	U _c	MCOV	1 s	10 s	0.5 kA	1 kA	2 kA	5 kA	10 kA	20 kA	40 kA
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}	kV _{peak}	kV _{peak}	kVpeak	kV _{peak}	kV _{peak}	kV _{peak}
24 ³⁾	24	19.2	19.4	27.6	26.4	46.1	47.6	49.5	53.6	56.4	62.1	69.4
36 ³⁾	30	24.0	24.4	34.5	33.0	57.6	59.5	61.8	67.0	70.5	77.6	86.8
	36	28.8	29.0	41.4	39.6	69.2	71.4	74.2	80.4	84.6	93.1	105
52	42	34	34.0	48.3	46.2	80.7	83.3	86.5	93.8	98.7	109	122
	48	38	39.0	55.2	52.8	92.2	95.1	98.9	108	113	125	139
	51	41	41.3	58.6	56.1	98.0	102	105	114	120	132	148
	54	43	43.0	62.1	59.4	104	107	112	121	127	140	157
	60	48	48.0	69.0	66.0	116	119	124	134	141	156	174
	72	58	58.0	82.8	79.2	139	143	149	161	170	187	209
72	54	43	43.0	62.1	59.4	104	107	112	121	127	140	157
	60	48	48.0	69.0	66.0	116	119	124	134	141	156	174
	66	53	53.4	75.9	72.6	127	131	136	148	156	171	191
	72	58	58.0	82.8	79.2	139	143	149	161	170	187	209
	75	60	60.7	86.2	82.5	144	149	155	168	177	194	217
	78	62	63.1	89.7	85.8	150	155	161	175	184	202	226
	81	65	65.6	93.1	89.1	156	161	167	181	191	210	235
	84	67	68.0	96.6	92.4	162	167	173	188	198	218	243
100	75	59	60.7	86.2	82.5	144	149	155	168	177	194	217
	78	61	63.1	89.7	85.8	150	155	161	175	184	202	226
	84	65	68.0	96.6	92.4	162	167	173	188	198	218	243
	90	69	72.0	103	99.0	173	179	186	201	212	233	261
	96	74	77.0	110	105	185	191	198	215	226	249	278
123	90	72	72.0	103	99.0	173	179	186	201	212	233	261
	96	77	77.0	110	105	185	191	198	215	226	249	278
	102	78	82.6	117	112	196	203	210	228	240	264	295
	108	78	84.0	124	118	208	214	223	242	254	280	313
	120	78	98.0	138	132	231	238	248	268	282	311	347
	129	78	104	148	141	248	256	266	288	304	334	373
	132	78	106	151	145	254	262	272	295	311	342	382
	138	78	111	158	151	265	274	285	309	325	357	399
	144	78	115	165	158	277	286	297	322	339	373	417
	150	78	121	172	165	288	298	309	335	353	388	434

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

 The continuous operating voltages Uc (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. Uc has to be considered only when the actual system voltage is higher than the tabulated. Any arrester with Uc higher than or equal to the actual system voltage divided by √3 can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (4.5 kJ/kV (U_r)).

3) Arresters for system voltages 36 kV or below can be supplied, on request, when the order also includes arresters for higher system voltages.

PEXLIM Q Guaranteed protective data 145 - 420 kV

Max. system voltage	Rated voltage	Max. cont operating	inuous voltage ¹⁾	TOV capability ²⁾ Max. residual voltage with current wave								
		as per IEC	as per ANSI/IEEE		1	30/60 µs	1	I	8/20 µs	I	1	1
U _m	Ur	Uc	MCOV	1 s	10 s	0.5 kA	1 kA	2 kA	5 kA	10 kA	20 kA	40 kA
kVrms	kV _{rme}	kVrme	kVrms	kVrme	kVrms	kVpeak	kVneak	kVpeak	kVpeak	kVneak	kVneak	kVpeak
145	108	86	86.0	124	118	208	214	223	242	254	280	313
	120	92	98.0	138	132	231	238	248	268	282	311	347
	132	92	106	151	145	254	262	272	295	311	342	382
	138	92	111	158	151	265	274	285	309	325	357	399
	144	92	115	165	158	277	286	297	322	339	373	417
	150	92	121	172	165	288	298	309	335	353	388	434
	162	92	131	186	178	312	321	334	362	381	419	469
	168	92	131	193	184	323	333	346	376	395	435	486
170	132	106	106	151	145	254	262	272	295	311	342	382
	144	108	115	165	158	277	286	297	322	339	373	417
	150	108	121	172	165	288	298	309	335	353	388	434
	162	108	131	186	178	312	321	334	362	381	419	469
	168	108	131	193	184	323	333	346	376	395	435	486
	192	108	152	220	211	369	381	396	429	452	497	555
245	180	144	144	207	198	346	357	371	402	423	466	521
	192	154	154	220	211	369	381	396	429	452	497	555
	198	156	160	227	217	381	393	408	443	466	512	573
	210	156	170	241	231	404	417	433	469	494	543	608
	216	156	175	248	237	415	428	445	483	508	559	625
	219	156	177	251	240	421	434	451	489	515	567	634
	222	156	179	255	244	427	440	458	496	522	574	642
	228	156	180	262	250	438	452	470	510	536	590	660
300	216	173	175	248	237	415	428	445	483	508	559	625
	240	191	191	276	264	461	476	495	536	564	621	694
	258	191	209	296	283	496	512	532	576	607	667	746
	264	191	212	303	290	507	523	544	590	621	683	764
	276	191	220	317	303	530	547	569	617	649	714	798
362	258	206	209	296	283	496	512	532	576	607	667	746
	264	211	212	303	290	507	523	544	590	621	683	764
	276	221	221	317	303	530	547	569	617	649	714	798
	288	230	230	331	316	553	571	593	643	677	745	833
420	330	264	267	379	363	634	654	680	737	776	854	954
	336	267	272	386	369	646	666	692	751	790	869	972
	342	267	277	393	376	657	678	705	764	804	885	989
	360	267	291	414	396	692	714	742	804	846	931	1046

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages U_c (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. U_c has to be considered only when the actual system voltage is higher than the tabulated. Any arrester with U_c higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (4.5 kJ/kV (U_r)).

PEXLIM Q Technical data for housings

Max. system voltage	Rated voltage	Housing	Creepage distance	External insulation *)				Dimensions					
U _m	Ur			1.2/50 µs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	В	С	D	Fig.
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm	
24	24	XV024	1363	283	126	126	242	21	481	-	-	-	1
36	30-36	XV036	1363	283	126	126	242	21	481	-	-	-	1
52	42-72	XV052	2270	400	187	187	330	25	736	-	-	-	1
72	54-72	XV072	2270	400	187	187	330	25	736	-	-	-	1
	75-84	XV072	3625	578	293	293	462	38	1080	-	-	-	1
100	75-96	XV100	3625	578	293	293	462	38	1080	-	-	-	1
123	90-120	XH123	3625	578	293	293	462	37	1080	-	-	-	1
	90-96	XV123	4540	800	374	374	660	43	1397	-	-	-	2
	108-144	XV123	4540	800	374	374	660	45	1397	-	-	-	2
	150	XV123	4988	861	419	419	704	52	1486	-	-	-	2
145	108-120	XH145	3625	578	293	293	462	36	1080	-	-	-	1
	108-120	XV145	4540	800	374	374	660	45	1397	-	-	-	2
	132-144	XV145	4540	800	374	374	660	45	1397	-	-	-	2
	150	XV145	4988	861	419	419	704	52	1486	-	-	-	2
	162-168	XV145	5895	978	480	480	792	57	1741	-	-	-	2
170	132-144	XH170	4540	800	374	374	660	48	1417	400	-	160	3
	150	XH170	4988	861	419	419	704	54	1506	400	-	160	3
	132	XV170	5895	978	480	480	792	59	1761	400	-	160	3
	144-192	XV170	5895	978	480	480	792	59	1761	400	-	160	3
245	192	XM245	5895	978	480	480	492	59	1761	600	-	300	4
	180-210	XH245	7250	1156	586	586	924	73	2105	600	-	300	4
	216-228	XH245	7250	1156	586	586	924	71	2105	600	-	300	4
	180-198	XV245	8613	1439	712	712	1166	94	2617	800	600	400	5
	210-228	XV245	8613	1439	712	712	1166	91	2617	800	600	400	5
300	216-264	XH300	8613	1439	712	712	1166	94	2617	900	600	500	5
	276	XH300	8613	1439	712	712	1166	91	2617	900	600	500	6
	216	XV300	9520	1556	773	773	1254	98	2872	900	600	500	5
	240-258	XV300	9520	1556	773	773	1254	97	2872	900	600	500	5
	264-276	XV300	9520	1556	773	773	1254	96	2872	900	600	500	5
362	258-264	XH362	9520	1556	773	773	1254	103	2872	1200	800	600	5
	276-288	XH362	9520	1556	773	773	1254	102	2872	1200	800	600	5
	258-288	XV362	11790	1956	960	960	1584	127	3533	1400	800	700	7
420	330-342	XH420	10875	1734	879	879	1386	116	3216	1400	800	700	5
	360	XH420	10875	1734	879	879	1386	116	3216	1400	800	700	5

 $^{\ast)}$ Sum of withstand voltages for empty units of arrester.

PEXLIM Q Technical data for housings

Max. system voltage	Rated voltage	Housing	Creepage distance	External ins	ulation *)			Dimensior	าร				
U _m	Ur			1.2/50 μs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	В	с	D	Fig.
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm	
Neutral-	ground a	rresters											
52	30-36	XN052	1363	400	187	187	330	21	736	-	-	-	1
72	42-54	XN072	2270	400	187	187	330	24	736	-	-	-	1
100	60	XN100	2270	400	187	187	330	25	736	-	-	-	1
123	72	XN123	2270	400	187	187	330	25	736	-	-	-	1
	75-120	XN123	3625	578	293	293	462	38	1080	-	-	-	1
145	84-120	XN145	3625	578	293	293	462	37	1080	-	-	-	1
170	84-120	XN170	3625	578	293	293	462	37	1080	-	-	-	1
245	108-120	XN245	3625	578	293	293	462	36	1080	-	-	-	1
	132-144	XN245	4540	800	374	374	660	45	1397	-	-	-	2

 $^{\ast)}$ Sum of withstand voltages for empty units of arrester.

PEXLIM Q Technical data for housings

Line terminals

Aluminium flag with other items in stainless steel

1HSA410 000-N Aluminium

Stainless steel

Drilling plans

NOTE! Alternative drilling plan 3 slotted holes (120 °), n14 at R111-127

Without insulating base Aluminium

Insulating base 1HSA430 000-A Epoxy resin

M12 bolts for connection to structure are not supplied by ABB. Required threaded grip length is 15-20 mm.

Earth terminals

PEXLIM Q Shipping data

Rated voltage	Housing	Number of arresters per crate					
		One		Three		Six	
Ur		Volume	Gross	Volume	Gross	Volume	Gross
1.57			1	3	Lee	S	
KV _{rms}	N// / 00 /	III	ку	Im	кg	m	ку
24	XVU24	·····	·····	·····	•••••	·····	·····
30-36	XV036			~ =			
042-072	XV052	0.5	49	0.5	107	0.9	194
054-072	XV072	0.5	49	0.5	107	0.9	194
075-084	XV072	0.7	65	0.7	145	1.2	265
075-096	XV100	0.7	65	0.7	145	1.2	265
090-120	XH123	0.7	65	0.7	145	1.2	265
090-096	XV123	0.9	81	0.9	183	1.5	336
108-144	XV123	0.9	81	0.9	183	1.5	336
150	XV123	0.9	81	0.9	183	1.5	336
108-120	XH145	0.7	67	0.7	151	1.2	277
108-120	XV145	0.9	82	0.9	186	1.5	338
132-144	XV145	0.9	81	0.9	186	1.5	342
150	XV145	0.9	82	0.9	186	1.5	342
162-168	XV145	1.1	95	1.1	215	1.9	395
132-144	XH170	0.9	84	0.9	192	1.5	354
150	XH170	0.9	84	0.9	192	1.5	354
132	XV170	1.1	98	1.1	224	1.9	413
144-192	XV170	1.1	98	1.1	224	1.9	413
192	XM245	1.1	100	1.1	230	1.9	425
180-210	XH245	1.1	111	1.1	263	1.9	491
216-228	XH245	1.1	109	1.1	257	1.9	479
180-198	XV245	1.0	164	1.7	340	-	-
210-228	XV245	0.9	115	1.5	291	-	-
216-276	XH300	0.9	126	1.7	345	-	-
216	XV300	1.5	211	2.6	443	-	-
240-258	XV300	1.4	192	2.3	416	-	-
264-276	XV300	1.0	157	1.7	369	-	-
258-264	XH362	1.5	211	2.5	443	-	-
276-288	XH362	1.4	192	2.3	416	-	-
258-288	XV362	2.2	278	3.8	564	-	-
330-360	XH420	2.2	268	3.8	534	-	-

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specifica-

tion. ABB reserves the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

i

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

PEXLIM Q Shipping data

Rated voltage	Housing	Number of arresters per crate						
		One		Three		Six		
Ur		Volume	Gross	Volume	Gross	Volume	Gross	
kV _{rms}		m³	kg	m ³	kg	m ³	kg	
Manufact and a								
Neutral-ground	d arresters			••••••				
30-36	XN052	0.5	49	0.5	83	0.9	146	
42-54	XN072	0.5	49	0.5	83	0.9	146	
60	XN100	0.5	49	0.5	83	0.9	146	
72	XN123	0.5	49	0.5	83	0.9	146	
75-120	XN123	0.7	65	0.7	145	1.2	265	
84-120	XN145	0.7	65	0.7	145	1.2	265	
84-120	XN170	0.7	65	0.7	145	1.2	265	
108-120	XN245	0.7	65	0.7	145	1.2	265	
132, 144	XN245	0.9	81	0.9	183	1.5	336	

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specifica-

tion. ABB reserves the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

Zinc Oxide Surge Arrester PEXLIM P-X

Protection of switchgear, transformers and other equipment in high voltage systems against atmospheric and switching overvoltages.

- in areas with very high lightning intensity
- where grounding or shielding conditions are poor or incomplete
- for important installations
- where energy requirements are very high (e.g. very long lines, capacitor protection).

Superior where low weight, reduced clearances, flexible mounting, non-fragility and additional personnel safety is required.

Major component in PEXLINK[™] concept for transmission line protection.

i

Other data can be ordered on request. Please contact your local sales representative.

Brief performance data

System voltages (U _m)	52 - 420 kV
Rated voltages (U _r)	42 - 360 kV
Nominal discharge current (IEC)	20 kA _{peak}
Classifying current (ANSI/IEEE)	15 kA _{peak}
Discharge current withstand strength:	
High current 4/10 µs	100 kA _{peak}
Low current 2000 µs	1500 A _{peak}
Energy capability:	
Line discharge class (IEC)	Class 4
[2 impulses, (IEC Cl. 8.5.5)	12.0 kJ/kV (U _r)]
Fulfils/exceeds requirements of ANSI transmission-	
line discharge test for 362 kV systems.	
Short-circuit/Pressure relief capability	65 kA _{sym}
External insulation	Fulfils/exceeds
	standards
Mechanical strength:	
Specified long-term load (SLL)	2500 Nm
Specified short-term load (SSL)	4000 Nm
Service conditions:	
Ambient temperature	-50 °C to +45 °C

Ambient temperature Design altitude Frequency -50 °C to +45 °C max. 1000 m 15 - 62 Hz

PEXLIM P-X Guaranteed protective data 24 - 145 kV

Max. system voltage	Rated voltage	Max. con operating	tinuous g voltage ¹⁾	TOV cap	pability ²⁾ Max. residual voltage with current wave							
		as per IEC	as per ANSI/IEEE			30/60 µs	5		8/20 µs			
U _m	Ur	Uc	MCOV	1 s	10 s	1 kA	2 kA	3 kA	5 kA	10 kA	20 kA	40 kA
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}						
24 ³⁾	24	19.2	19.5	27.8	26.4	46.8	48.5	49.7	51.9	54.6	59.8	65.6
36 ³⁾	30	24.0	24.4	34.8	33.0	58.5	60.7	62.2	64.9	68.3	74.8	81.9
	33	26.4	26.7	38.2	36.3	64.4	66.7	68.4	71.4	75.1	82.3	90.1
	36	28.8	29.0	41.7	39.6	70.2	72.8	74.6	77.9	81.9	89.7	98.3
	39	31.2	31.5	45.2	42.9	76.1	78.8	80.8	84.3	88.8	97.2	107
52	42	34	34.0	48.7	46.2	81.9	84.9	87.0	90.8	95.6	105	115
	48	38	39.0	55.6	52.8	93.6	97.0	99.4	104	110	120	132
	51	41	41.3	59.1	56.1	99.5	104	106	111	117	128	140
72	54	43	43.0	62.6	59.4	106	110	112	117	123	135	148
	60	48	48.0	69.6	66.0	117	122	125	130	137	150	164
	63	50	51.0	73.0	69.3	123	128	131	137	144	157	172
	72	58	58.0	83.5	79.2	141	146	150	156	164	180	197
100	66	53	53.4	76.5	72.6	129	134	137	143	151	165	181
	72	58	58.0	83.5	79.2	141	146	150	156	164	180	197
	75	60	60.7	87.0	82.5	147	152	156	163	171	187	205
	78	62	63.1	90.4	85.8	153	158	162	169	178	195	213
	81	65	65.6	93.9	89.1	158	164	168	176	185	202	222
<u>.</u>	84	67	68.0	97.4	92.4	164	170	174	182	192	210	230
123	90	72	72.0	104	99.0	176	182	187	195	205	225	246
	96	77	77.0	111	105	188	194	199	208	219	240	263
	102	78	82.6	118	112	199	207	212	221	233	255	279
	108	78	84.0	125	118	211	219	224	234	246	270	295
	114	78	92.3	132	125	223	231	237	247	260	284	312
	120	78	98.0	139	132	234	243	249	260	273	299	328
	129	78	104	149	141	252	261	268	279	294	322	353
	132	78	106	153	145	258	267	274	286	301	329	361
	138	78	111	160	151	270	279	286	299	314	344	377
	144	78	115	167	158	281	291	299	312	328	359	394
.	150	78	121	174	165	293	304	311	325	342	374	410
145	108	86	86.0	125	118	211	219	224	234	246	270	295
	120	92	98.0	139	132	234	243	249	260	273	299	328
	132	92	106	153	145	258	267	274	286	301	329	361
	138	92	111	160	151	270	279	286	299	314	344	377

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages U_c (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures.

 U_c has to be considered only when the actual system voltage is higher than the tabulated. Any arrester with U_c higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (7.0 kJ/kV (Ur)).

3) Arresters for system voltages 36 kV or below can be supplied, on request, when the order also includes arresters for higher system voltages.

PEXLIM P-X Guaranteed protective data 145 - 420 kV

Max. system voltage	Rated voltage	Max. cor operating	ntinuous g voltage ¹⁾	nuous voltage 1) TOV capability 2) Max. residual voltage with current wave								
		as per IEC	as per ANSI/IEEE			30/60 µs	3		8/20 µs			
U _m	Ur	U _c	MCOV	1 s	10 s	1 kA	2 kA	3 kA	5 kA	10 kA	20 kA	40 kA
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}						
145	144	92	115	167	158	281	291	299	312	328	359	394
	150	92	121	174	165	293	304	311	325	342	374	410
	162	92	131	187	178	316	328	336	351	369	404	443
	168	92	131	194	184	328	340	348	364	383	419	459
170	132	106	106	153	145	258	267	274	286	301	329	361
	144	108	115	167	158	281	291	299	312	328	359	394
	150	108	121	174	165	293	304	311	325	342	374	410
	162	108	131	187	178	316	328	336	351	369	404	443
	168	108	131	194	184	328	340	348	364	383	419	459
	180	108	144	208	198	351	364	373	390	410	449	492
	192	108	152	222	211	375	388	398	415	437	479	525
245	180	144	144	208	198	351	364	373	390	410	449	492
	192	154	154	222	211	375	388	398	415	437	479	525
	198	156	160	229	217	387	400	410	428	451	494	541
	210	156	170	243	231	410	425	435	454	478	524	574
	214	156	173	248	235	419	434	445	464	488	535	586
	216	156	175	250	237	422	437	448	467	492	539	590
	219	156	177	254	240	427	443	454	474	499	546	598
	222	156	179	257	244	433	449	460	480	506	554	607
	228	156	180	264	250	445	461	473	493	519	568	623
300	216	173	175	250	237	422	437	448	467	492	539	590
	228	182	182	264	250	445	461	473	493	519	568	623
	240	191	191	278	264	468	485	497	519	546	598	656
	258	191	209	299	283	504	522	535	558	587	643	705
	264	191	212	306	290	515	534	547	571	601	658	721
	276	191	220	320	303	539	558	572	597	628	688	754
362	258	206	209	299	283	504	522	535	558	587	643	705
	264	211	212	306	290	515	534	547	571	601	658	721
	276	221	221	320	303	539	558	572	597	628	688	754
	288	230	230	334	316	562	582	597	623	656	718	787
420	330	264	267	382	363	644	667	684	714	751	823	901
	336	267	272	389	369	656	679	696	727	765	838	918
	342	267	277	396	376	667	691	709	740	779	852	934
	360	267	291	417	396	702	728	746	779	819	897	983

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages U_c (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. U_c has to be considered only when the actual system voltage is higher than the tabulated.

Any arrester with U_c higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (7.0 kJ/kV (U_r)).

PEXLIM P-X Technical data for housings

Max. system voltage	Rated voltage	Housing	Creepage distance	External insulation *)			Dimensions						
U _m	Ur			1.2/50 µs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	В	с	D	Fig.
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm	
24	24	XV024	1363	283	126	126	242	18	481	-	-	-	1
36	30-36	XV036	1363	283	126	126	242	18	481	-	-	-	1
	39	XV036	2270	400	187	187	330	29	736	-	-	-	1
52	42-51	XV052	2270	400	187	187	330	29	736	-	-	-	1
72	54-72	XV072	2270	400	187	187	330	28	736	-	-	-	1
	75-84	XV072	3625	578	293	293	462	43	1080	-	-	-	1
100	75-96	XV100	3625	578	293	293	462	43	1080	-	-	-	1
123	90-108	XH123	3625	578	293	293	462	42	1080	-	-	-	1
	90-144	XV123	4540	800	374	374	660	53	1397	-	-	-	2
	150	XV123	4988	861	419	419	704	54	1486	-	-	-	2
145	108	XH145	3625	578	293	293	462	41	1080	-	-	-	1
	108-144	XV145	4540	800	374	374	660	52	1397	-	-	-	2
	150	XV145	4988	861	419	419	704	54	1486	-	-	-	2
	162-168	XV145	5895	978	480	480	792	65	1741	-	-	-	2
170	132-144	XH170	4540	800	374	374	660	52	1417	400	-	160	3
	132-180	XV170	4988	861	419	419	704	56	1506	400	-	160	3
	192	XV170	5895	978	480	480	792	69	1761	400	-	160	3
245	180-192	XM245	5895	978	480	480	792	65	1761	400	-	160	3
	180-216	XH245	7250	1156	586	586	924	82	2105	400	-	160	3
	180-198	XV245	8613	1439	712	712	1166	100	2617	800	600	400	5
	210-228	XV245	8613	1439	712	712	1166	97	2617	600	-	300	4
300	216-240	XH300	8613	1439	712	712	1166	101	2617	900	600	500	5
	258-276	XH300	8613	1439	712	712	1166	97	2617	900	600	500	6
	216-276	XV300	9520	1556	773	773	1254	109	2872	900	600	500	5
362	258-288	XH362	9520	1556	773	773	1254	117	2872	1200	800	600	5
	258-288	XV362	11790	1956	960	960	1584	146	3533	1400	800	700	7
420	330-360	XH420	10875	1734	879	879	1386	130	3216	1400	800	700	5
Neutral-	ground a	rresters											
52	30-36	XN052	1363	283	126	126	242	19	481	-	-	-	1
72	42-54	XN072	2270	400	187	187	330	29	736	-	-	-	1
100	60	XN100	2270	400	187	187	330	30	736	-	-	-	1
123	72	XN123	2270	400	187	187	330	28	736	-	-	-	1
	75-120	XN123	3625	578	293	293	462	43	1080	-	-	-	1
145	84-120	XN145	3625	578	293	293	462	42	1080	-	-	-	1
170	96-120	XN170	3625	578	293	293	462	42	1080	-	-	-	1
245	108	XN245	3625	578	293	293	462	41	1080	-	-	-	1
	132-144	XN245	4540	800	374	374	660	50	1397	-	-	-	2
•••••	•••••••	••••••	•••••••	•••••••••••••••••••••••••••••••••••••••	•••••••	••••••	*******	•••••••••••	*****	••••••••	••••••	•••••••	••••••

*) Sum of withstand voltages for empty units of arrester.

PEXLIM P-X Technical data for housings

Line terminals

Aluminium

1HSA410 000-M Aluminium flag with other items in stainless steel

1HSA410 000-N Aluminium

1HSA410 000-P Stainless steel

Drilling plans

NOTE! Alternative drilling plan 3 slotted holes (120 °), n14 at R111-127

> Without insulating base Aluminium

1HSA430 000-A Epoxy resin

M12 bolts for connection to structure are not supplied by ABB. Required threaded grip length is 15-20 mm.

PEXLIM P-X Shipping data

Rated voltage	Housing	Housing Number of arresters per crate											
		One		Three		Six							
Ur		Volume	Gross	Volume	Gross	Volume	Gross						
kV _{rms}		m³	kg	m ³	kg	m³	kg						
24	XV024	0.1	42	0.5	86	0.9	152						
30-36	XV036	0.1	42	0.5	86	0.9	152						
39	XV036	0.5	52	0.5	116	0.9	212						
42-72	XV052	0.5	52	0.5	116	0.9	212						
54-72	XV072	0.5	52	0.5	116	0.9	212						
75-84	XV072	0.7	71	0.7	163	1.2	301						
75-96	XV100	0.7	71	0.7	163	1.2	301						
90-120	XH123	0.7	71	0.7	163	1.2	301						
90-144	XV123	0.9	87	0.9	201	1.5	372						
150	XV123	0.9	87	0.9	201	1.5	372						
108-120	XH145	0.7	68	0.7	154	1.2	283						
108-144	XV145	0.9	87	0.9	201	1.5	372						
150	XV145	0.9	87	0.9	201	1.5	372						
162-168	XV145	1.1	98	1.1	239	1.9	443						
132-144	XH170	0.9	89	0.9	207	1.5	384						
150	XH170	0.9	89	0.9	207	1.5	384						
132-192	XV170	1.1	102	1.1	251	1.9	443						
192	XM245	1.1	98	1.1	239	1.9	443						
180-228	XH245	1.1	115	1.1	290	1.9	545						
180-198	XV245	0.9	133	1.5	339	-	-						
210-228	XV245	0.9	133	1.5	339	-	-						
216-264	XH300	1.0	155	1.7	358	-	-						
276	XH300	1.0	155	1.7	358	-	-						
216-276	XV300	1.0	163	1.7	382	-	-						
258-288	XH362	1.6	207	2.3	435	-	-						
258	XV362	2.1	242	2.9	497	-	-						
264-288	XV362	2.1	258	2.3	545	-	-						
330-360	XH420	2.1	242	2.3	497	-	-						
Neutral group	ad arreators												
Neutral-grou	nu arresters		40				150						
30-30	XINU52	U. I	42	0.5	80 110	0.9	152						
42-04	XNU/2	0.5	52	0.5	011	0.9	212						
50	XN100	0.5	52	0.5	116	0.9	212						
12	XN123	0.5	52	0.5	116	0.9	212						
/5-120	XN123	0.7	/1	0.7	163	1.2	301						
84-120	XN145	0.7	71	0.7	163	1.2	301						

0.7

0.7

0.9

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

0.7

0.7

0.9

71

71

87

XN170

XN245

XN245

96-120

108-120

132-144

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specification. ABB reserves the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

1.2

1.2

1.5

301

301

372

163

163

201

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

Zinc Oxide Surge Arrester PEXLIM P-Y

Protection of switchgear, transformers and other equipment in high voltage systems against atmospheric and switching overvoltages.

- in areas with very high lightning intensity
- where grounding or shielding conditions are poor or incomplete
- for important installations
- where energy requirements are very high (e.g. very long lines, capacitor protection).

Superior where low weight, reduced clerances, flexible mounting, non-fragility and additional personnel safety is required.

i

Other data can be ordered on request. Please contact your local sales representative.

Brief performance data

System voltages (U _m)	300 - 550 kV
Rated voltages (U _r)	228 - 444 kV
Nominal discharge current (IEC)	20 kA _{peak}
Classifying current (ANSI/IEEE)	15 kA _{peak}
Discharge current wittstand strength:	
High current 4/10 µs	100 kA _{peak}
Low current 2 000 µs	1 500 A _{peak}
Energy capability:	
Line discharge class (IEC)	Class 4
[2 impulses, (IEC Cl. 8.5.5)	12.0 kJ/kV (Ur)]
Fulfils/exceeds requirements of ANSI transmission-	
line discharge test for 362 kV systems.	
Short-circuit/Pressure relief capability	65 kA _{sym}
External insulation	Fulfils/exceeds standards
Mechanical strength:	
Specified long-term load (SLL)	6 000 Nm
Specified short-term load (SSL)	9 000 Nm
Service conditions:	
Ambient temperature	-50 °C to +45 °C
Design altitude	max. 1 000 m
Frequency	15 - 62 Hz

PEXLIM P-Y Guranteed protective data

Max. system voltage	Rated voltage	Max. conti operating	inuous voltage 1)	TOV capal	bility ²⁾	Max. residual voltage with current wave						
		as per IEC	as per ANSI/IEEE		I	30/60 µs	1	1	8/20 µs	1	1	1
U _m	Ur	U _c	мсоу	1 s	10 s	1 kA	2 kA	3 kA	5 kA	10 kA	20 kA	40 kA
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}
300	228	182	182	264	250	445	461	473	493	519	568	623
	240	191	191	278	264	468	485	497	519	546	598	656
	258	191	209	299	283	504	522	535	558	587	643	705
	264	191	212	306	290	515	534	547	571	601	658	721
	276	191	220	320	303	539	558	572	597	628	688	754
362	258	206	209	299	283	504	522	535	558	587	643	705
	264	211	212	306	290	515	534	547	571	601	658	721
	276	221	221	320	303	539	558	572	597	628	688	754
	288	230	230	334	316	562	582	597	623	656	718	787
420	330	264	267	382	363	644	667	684	714	751	823	901
	336	267	272	389	369	656	679	696	727	765	838	918
	342	267	277	396	376	667	691	709	740	779	852	934
	360	267	291	417	396	702	728	746	779	819	897	983
	378	267	306	438	415	737	764	783	817	860	942	1037
	390	267	315	452	429	761	788	808	843	888	972	1070
	396	267	318	459	435	773	800	820	856	901	987	1086
550	396	317	318	459	435	773	800	820	856	901	987	1086
	420	336	336	487	462	819	849	870	908	956	1051	1152
	444	349	353	515	488	866	897	920	960	1015	1111	1217

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages U_c (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures.

 U_c has to be considered only when the actual system voltage is higher than the tabulated. Any arrester with U_c higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

, , , , , , , , ,

2) With prior duty equal to the maximum single-impulse energy stress (7.0 kJ/kV (U_r)).

PEXLIM P-Y Technical data for housings

Max. system voltage	Rated voltage	Housing	Creepage distance	External ins	kternal insulation *)					Dimensions							
U _m	Ur			1.2/50 μs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	в	С	D	Fig.				
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm					
300	228-240	YH300	7500	1122	586	586	924	112	2220	800	-	400	1				
	258-276	YH300	8863	1405	712	712	1166	126	2625	800	-	500	2				
	228-276	YV300	9770	1522	773	773	1254	139	2880	800	-	500	2				
362	258-276	YM362	8863	1405	712	712	1166	134	2625	1200	1000	600	3				
	258-288	YH362	9770	1522	773	773	1254	145	2880	1200	1000	600	3				
	258-288	YV362	11250	1683	879	879	1386	180	3330	1400	1000	700	4				
420	330-360	YH420	11125	1700	879	879	1386	170	3225	1400	1000	700	3				
	378-396	YH420	12613	1966	1005	1005	1628	188	3740	1400	1000	700	5				
	330-396	YV420	13520	2083	1066	1066	1716	202	3995	1400	1000	700	5				
550	396-444	YH550	14875	2261	1172	1172	1848	226	4335	2000	1000	1000	6				

*) Sum of withstand voltages for empty units of arrester.

PEXLIM P-Y Technical data for housings

Figure 4

Figure 5

1HSA410 000-L Aluminium

1HSA410 000-M Aluminium flag with other items in stainless steel

Line terminals

1HSA410 000-P Stainless steel

Earth terminals

1HSA420 000-U Stainless steel

1HSA420 000-V Stainless steel

Drilling plans

Optional

Standard

Insulating base 1HSA430 000-C Epoxy resin

M16 bolts for connection to structure are not supplied by ABB. Required threaded grip length is 15-20 mm.

6

0

M16 (4x)

225

0

225

Drilling plans with insulating base

PEXLIM P-Y Shipping data

Rated voltage	Housing	Number of a	Number of arresters per crate							
		One		Three						
Ur		Volume	Gross	Volume	Gross					
kV _{rms}		m³	kg	m ³	kg					
288-240	YH300	1,18	162	1,18	386					
258-276	YH300	1,18	176	1,18	429					
228-276	YV300	1,18	189	1,18	467					
258-276	YM362	1,69	230	1,94	499					
258-288	YH362	1,69	240	1,94	531					
330-360	YH420	1,85	280	2,19	621					
258-288	YV362	1,85	290	2,19	652					
378-396	YH420	1,85	298	2,19	675					
330-396	YV420	1,85	312	2,19	716					
396-444	YH550	3,38	426	3,38	879					

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specification. ABB reserves

the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

Zinc-Oxide Surge Arrester HS PEXLIM P-T

Protection of switchgear, transformers and other equipment in high voltage systems against atmospheric and switching

overvoltages.

- in areas with very high lightning intensity
- where grounding or shielding conditions are poor or incomplete
- for important installations
- where energy requirements are very high (e.g. very long lines, capacitor protection).
- Specially suited to extreme seismic zones.

Superior where low weight, non-fragility and additional personnel safety is required.

Other data can be ordered on request. Please

contact your local sales representative. Brief performance data

System voltages (U _m)	245 - 550 kV
Rated voltages (U _r)	180 - 444 kV
Nominal discharge current (IEC)	20 kA _{peak}
Classifying current (ANSI/IEEE)	10/15 kA _{peak}
Discharge current withstand strength:	
High current 4/10 µs	100 kA _{peak}
Low current 2000 µs	1500 A _{peak}
Energy capability:	
Line discharge class (IEC)	Class 4
[2 impulses, (IEC Cl. 8.5.5)	10.5 kJ/kV (U _r)]
Fulfils/exceeds requirements of ANSI transmission-	
line discharge test for 362 kV systems.	
Short-circuit/Pressure relief capability	65 kA _{sym}
External insulation	Fulfils/exceeds
	standards
Mechanical strength:	
Specified long-term load (SLL)	19000 Nm
Specified short-term load (SSL)	28000 Nm
Service conditions:	
Ambient temperature	-50 °C to +45 °C
Design altitude	max. 1000 m
Frequency	15 - 62 Hz

HS PEXLIM P-T Guaranteed protective data

Max. system voltage	Rated voltage	Max. cont operating	tinuous voltage ¹⁾	TOV capa	bility ²⁾	Max. residual voltage with current wave									
		as per IEC	as per ANSI/IEEE		1	30/60 µs	1	1	8/20 µs	1	1	1			
U _m	Ur	Uc	MCOV	1 s	10 s	1 kA	2 kA	3 kA	5 kA	10 kA	20 kA	40 kA			
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}			
245	180	144	144	208	198	351	364	373	390	410	449	492			
	192	154	154	222	211	375	388	398	415	437	479	525			
	228	156	180	264	250	445	461	473	493	519	568	623			
300	228	182	182	264	250	445	461	473	493	519	568	623			
	240	191	191	278	264	468	485	497	519	546	598	656			
	264	191	212	306	290	515	534	547	571	601	658	721			
362	258	206	209	299	283	504	522	535	558	587	643	705			
	264	211	212	306	290	515	534	547	571	601	658	721			
	276	221	221	320	303	539	558	572	597	628	688	754			
380	288	230	230	334	316	562	582	597	623	656	718	787			
400	300	240	240	348	330	585	607	622	649	683	748	819			
420	330	264	267	382	363	644	667	684	714	751	823	901			
	360	267	291	417	396	702	728	746	779	819	897	983			
	390	267	315	452	429	761	788	808	843	888	972	1070			
550	396	317	318	459	435	773	800	820	856	901	987	1086			
	420	336	336	487	462	819	849	870	908	956	1051	1152			
	444	349	353	515	488	866	897	920	960	1015	1111	1217			
							

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages Uc (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. Uc has to be considered only when the actual system voltage is higher than the tabulated. Any arrester with U_c higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (7.0 kJ/kV (U_r)).

HS PEXLIM P-T Technical data for housings

Max. system voltage	Rated voltage	Housing	Creepage distance	External ins	ulation *)			Dimensions							
U _m	Ur			1.2/50 μs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	в	с	D	Fig.		
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm			
245	180-192	TM245	4950	750	350	350	525	115	1770	600	-	300	1		
	180-192	TH245	7150	1081	524	510	750	150	2310	800	-	500	1		
	228	TH245	7150	1081	524	510	750	150	2310	600	-	300	1		
300	228-264	TM300	7150	1081	524	510	750	150	2310	900	600	400	2		
	228	TV300	9900	1500	700	700	1050	245	3495	1400	800	700	3		
	240	TV300	9900	1500	700	700	1050	245	3495	1200	800	600	3		
	264	TV300	9900	1500	700	700	1050	235	3495	900	600	500	3		
362	258-264	TH362	9900	1500	700	700	1050	245	3495	1600	800	1000	3		
	276	TH362	9900	1500	700	700	1050	240	3495	1200	800	800	3		
380	288	TH380	9900	1500	700	700	1050	240	3495	1400	800	700	3		
400	300	TM400	9900	1500	700	700	1050	240	3495	1400	800	700	3		
420	330-390	TH420	12100	1831	874	860	1275	270	4035	1200	800	800	3		
550	396	TH550	14300	2162	1048	1020	1500	310	4890	1800	1000	1000	4		
	420	TH550	14300	2162	1048	1020	1500	310	4890	1800	1000	1000	4		
	444	TH550	14850	2250	1050	1050	1575	365	5540	2000	1000	1200	5		

*) Sum of withstand voltages for empty units of arrester.

HS PEXLIM P-T Technical data for housings

Figure 4

HS PEXLIM P-T Accessories

Line terminals

1HSA410 000-B Aluminium flag with other items in stainless steel

1HSA410 000-C Aluminium

Stainless steel

Earth terminals

1HSA420 000-V Stainless steel

1HSA430 000-P Galvanized steel

M20 bolts for connection to structure are not supplied by ABB.

HS PEXLIM P-T Shipping data

Rated voltage	Housing	Number of arresters per crate									
		One		Three		Six					
Ur		Volume	Gross	Volume	Gross	Volume	Gross				
kV _{rms}		m³	kg	m ³	kg	m ³	kg				
180	TM245	2.4	208	2.4	476	4.8	953				
192	TM245	2.4	208	2.4	474	4.8	949				
180	TH245	5.6	308	5.6	645	6.5	1200				
192	TH245	5.6	307	5.6	643	6.5	1196				
228	TH245	5.4	299	5.4	628	6.0	1167				
228	TM300	5.6	307	5.6	642	6.5	1194				
240	TM300	5.6	306	5.6	640	6.5	1190				
264	TM300	5.6	303	5.6	631	6.5	1172				
228	TV300	2.4	351	4.4	905	-	-				
240	TV300	2.3	334	4.2	883	-	-				
264	TV300	2.6	329	4.3	860	-	-				
258	TH362	2.8	393	5.3	969	-	-	•			
264	TH362	2.8	392	5.3	968	-	-				
276	TH362	2.3	333	4.2	879	-	-				
288	TH380	2.4	346	4.5	890	-	-				
300	TM400	2.4	347	4.5	891	-	-				
330	TH420	5.2	423	5.5	1000	-	-				
360	TH420	5.2	420	5.5	990	-	-				
390	TH420	5.2	416	5.5	980	-	-	••••••			
396	TH550	5.8	523	6.6	1210	-	-				
420	TH550	5.8	521	6.6	1203	-	-				

Rated voltage	Housing	Number of arrest	ers per crate			
		Dne		Two		
Ur		Volume	Gross	Volume	Gross	
kV _{rms}		m³	kg	m³	kg	
444	TH550	3.7	562	5.5	975	

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specifica-

tion. ABB reserves the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

Zinc-Oxide Surge Arrester HS PEXLIM T-T

Protection of switchgear, transformers and other equipment in high voltage systems against atmospheric and switching overvoltages.

- in areas with very high lightning intensity
- where grounding or shielding conditions are poor or incomplete
- for important installations
- where energy requirements are very high (e.g. very long lines, capacitor protection).
- Specially suited to extreme seismic zones.

Superior where low weight, non-fragility and additional personnel safety is required.

i

Other data can be ordered on request. Please contact your local sales representative.

Brief performance data

•••••••••••••••••••••••••••••••••••••••	•••••••
System voltages (U _m)	245 - 800 kV
Rated voltages (U _r)	180 - 624 kV
Nominal discharge current (IEC)	10/15/20 kA _{peak}
Classifying current (ANSI/IEEE)	10/15 kA _{peak}
Discharge current withstand strength:	
High current 4/10 µs	100 kA _{peak}
Low current 2000 µs	2200 A _{peak}
Energy capability:	
Line discharge class (IEC)	Class 5
[2 impulses, (IEC CI, 8.5.5)	15.4 kJ/kV (U _r)]
	(1/3
Fulfils/exceeds requirements of ANSI transmission-	(1/3
Fulfils/exceeds requirements of ANSI transmission- line discharge test for 362 kV systems.	
Fulfils/exceeds requirements of ANSI transmission- line discharge test for 362 kV systems. Short-circuit/Pressure relief capability	65 kA _{sym}
Fulfils/exceeds requirements of ANSI transmission- line discharge test for 362 kV systems. Short-circuit/Pressure relief capability External insulation	65 kA _{sym} Fulfils/exceeds
Fulfils/exceeds requirements of ANSI transmission- line discharge test for 362 kV systems. Short-circuit/Pressure relief capability External insulation	65 kA _{sym} Fulfils/exceeds standards
Fulfils/exceeds requirements of ANSI transmission- line discharge test for 362 kV systems. Short-circuit/Pressure relief capability External insulation Mechanical strength:	65 kA _{sym} Fulfils/exceeds standards
Fulfils/exceeds requirements of ANSI transmission- line discharge test for 362 kV systems. Short-circuit/Pressure relief capability External insulation Mechanical strength: Specified long-term load (SLL)	65 kA _{sym} Fulfils/exceeds standards
Fulfils/exceeds requirements of ANSI transmission- line discharge test for 362 kV systems. Short-circuit/Pressure relief capability External insulation Mechanical strength: Specified long-term load (SLL) Specified short-term load (SSL)	65 kA _{sym} Fulfils/exceeds standards 19000 Nm 28000 Nm
Fulfils/exceeds requirements of ANSI transmission- line discharge test for 362 kV systems. Short-circuit/Pressure relief capability External insulation Mechanical strength: Specified long-term load (SLL) Specified short-term load (SSL) Service conditions:	65 kA _{sym} Fulfils/exceeds standards 19000 Nm 28000 Nm
Fulfils/exceeds requirements of ANSI transmission- line discharge test for 362 kV systems. Short-circuit/Pressure relief capability External insulation Mechanical strength: Specified long-term load (SLL) Specified short-term load (SSL) Service conditions: Ambient temperature	65 kA _{sym} Fulfils/exceeds standards 19000 Nm 28000 Nm
Fulfils/exceeds requirements of ANSI transmission- line discharge test for 362 kV systems. Short-circuit/Pressure relief capability External insulation Mechanical strength: Specified long-term load (SLL) Specified short-term load (SSL) Service conditions: Ambient temperature Design altitude	65 kA _{sym} Fulfils/exceeds standards 19 000 Nm 28 000 Nm -50 °C to +45 °C max. 1000 m

Frequency

15 - 62 Hz

HS PEXLIM T-T Guaranteed protective data

Max. system voltage	Rated voltage	Max. cont operating	inuous voltage 1)	TOV capa	bility ²⁾	Max. residual voltage with current wave						
		as per IEC	as per ANSI/IEEE			30/60 µs	1	1	8/20 µs	1	1	1
U _m	Ur	U _c	мсоу	1 s	10 s	1 kA	2 kA	3 kA	5 kA	10 kA	20 kA	40 kA
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}
245	180	144	144	209	198	354	364	371	389	405	438	476
	192	154	154	218	207	369	380	387	406	423	457	497
	216	156	174	246	233	415	427	435	457	476	514	559
	228	156	180	259	246	438	451	459	482	502	542	590
300	228	182	182	259	246	438	451	459	482	502	542	590
	240	191	191	273	258	461	475	484	507	528	571	621
362	258	206	209	310	293	523	538	548	575	599	647	704
	264	211	212	310	293	523	538	548	575	599	647	704
	276	221	221	314	297	531	546	556	583	608	656	714
380	288	230	230	328	310	554	569	580	609	634	685	745
400	300	240	240	342	323	577	593	604	634	660	713	776
420	330	264	267	378	358	638	656	669	702	731	789	859
	360	267	291	410	388	692	712	725	761	792	856	931
	390	267	315	444	420	750	771	786	824	858	927	1013
550	396	317	318	474	448	793	816	831	872	908	981	1072
	420	336	336	478	453	807	830	846	888	924	998	1091
	444	349	353	506	479	853	878	894	938	977	1060	1153
800	On reques	st	•••••	•••••••	••••••	•••••	•••••	••••••	•••••	•••••		••••••

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages U_c (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. U_c has to be considered only when the actual system voltage is higher than the tabulated.

Any arrester with U_c higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (10.0 kJ/kV (Ur)).

HS PEXLIM T-T Technical data for housings

Max. system voltage	Rated voltage	Housing	Creepage distance	External ins	ternal insulation *)				Dimensions						
U _m	Ur			1.2/50 μs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	в	С	D	Fig.		
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm			
245	180-216	TH245	7150	1081	524	510	750	170	2310	600	-	300	1		
	228	TV245	9900	1500	700	700	1050	245	3495	600	-	300	2		
300	228-240	TV300	9900	1500	700	700	1050	260	3495	1600	800	1000	3		
362	258-276	TH362	9900	1500	700	700	1050	265	3495	1600	800	1000	3		
380	288	TH380	9900	1500	700	700	1050	270	3495	1600	800	1000	3		
400	300	TM400	9900	1500	700	700	1050	270	3495	1600	800	1000	3		
420	330	TH420	12100	1831	874	860	1275	300	4035	1600	800	1000	3		
	360	TH420	12100	1831	874	860	1275	300	4035	1200	800	600	3		
	390	TV420	14300	2162	1048	1020	1500	330	4575	1200	800	600	3		
550	396	TH550	14300	2162	1048	1020	1500	350	4890	2000	1000	1200	4		
	420	TH550	14300	2162	1048	1020	1500	350	4890	2000	1000	1200	4		
	444	TH550	14850	2250	1050	1050	1575	405	5540	2000	1000	1200	5		

 $^{\ast)}$ Sum of withstand voltages for empty units of arrester.

HS PEXLIM T-T Technical data for housings

HS PEXLIM T-T Accessories

Line terminals

1HSA410 000-B Aluminium flag with other items in stainless steel

1HSA410 000-C Aluminium

1HSA410 000-D Stainless steel

Stainless steel

Earth terminals

Insulating base 1HSA430 000-P Galvanized steel

M20 bolts for connection to structure are not supplied by ABB.

HS PEXLIM T-T Shipping data

UrOne VolumeThree VolumeSix VolumeRossSix VolumekVmsm³kgm³kgm³kg180m³kgm³kgm³kg180TH2455.43155.46766.01262192TH2455.43165.46806.01270216TH2455.43215.46926.01295228TV302.84055.31006240TV302.84075.31011264TH3622.84115.31026276TH3822.84125.31028300TM4002.84165.31038300TH4205.85.51086300TH4205.24525.51086300TH4205.24525.51086300TH4205.24525.51086300TH4205.24835.51179300TH4205.26.71355300TH4205.26.71355300TH4205.26.71355300TH4205.26.76.7	Rated voltage	Housing	Number of a	Number of arresters per crate										
UrVolumeGrossVolumeGrossVolumeGrossSecondkVrmsm³kgm³kgm³kg180TH2455.43155.46766.01262192TH2455.43165.46806.01270216TH2455.43215.46926.01295228TV2452.63404.3893228TV3002.84055.31006240TV3002.84075.31011258TH3622.84115.31026264TH3622.84115.31026276TH3622.84125.3102828TH3622.84145.31038300TM4002.84165.31038300TM4002.8576.61163300TM4005.24525.51086300TM4005.24835.51179301TM2005.24835.51179302TM5006.76116.713576.7-304TM2005.26116.71355305TM4005.261			One		Three		Six							
kVmsm³kgm³kgm³kg180TH2455.43155.46766.01262192TH2455.43165.46806.01270216TH2455.43215.46926.01295228TV2452.63404.3893228TV3002.84075.31016240TV3002.84075.31026258TH3622.84115.31026264TH3622.84115.31026276TH3622.84115.31026276TH3622.84125.31026276TH3622.84145.31028276TH3622.84165.31028276TH3622.84165.31038300TM4002.85076.61163300TH4205.24525.51086300TM4005.24525.51179300TM4005.24535.51179300TM205.24535.51365300TM205.24635.5 <td< th=""><th>Ur</th><th></th><th>Volume</th><th>Gross</th><th>Volume</th><th>Gross</th><th>Volume</th><th>Gross</th><th></th></td<>	Ur		Volume	Gross	Volume	Gross	Volume	Gross						
kV _{ms} m³ kg m³ kg m³ kg 180 TH245 5.4 315 5.4 676 6.0 1262 192 TH245 5.4 316 5.4 680 6.0 1270 216 TH245 5.4 321 5.4 692 6.0 1295 228 TV245 2.6 340 4.3 893 - - 228 TV300 2.8 405 5.3 1006 - - 240 TV300 2.8 407 5.3 1011 - - 258 TH362 2.8 411 5.3 1026 - - 264 TH362 2.8 411 5.3 1028 - - 276 TH362 2.8 414 5.3 1033 - - 300 TM400 2.8 416 5.3 1038 - -														
180 TH245 5.4 315 5.4 676 6.0 1262 192 TH245 5.4 316 5.4 680 6.0 1270 216 TH245 5.4 321 5.4 692 6.0 1295 228 TV245 2.6 340 4.3 893 - - 228 TV300 2.8 405 5.3 1006 - - 240 TV300 2.8 407 5.3 1011 - - 258 TH362 2.8 411 5.3 1026 - - 264 TH362 2.8 411 5.3 1026 - - 276 TH362 2.8 412 5.3 1028 - - 300 TM400 2.8 414 5.3 1033 - - 300 TM400 2.8 507 6.6 1163 - - <th>kV_{rms}</th> <th></th> <th>m³</th> <th>kg</th> <th>m³</th> <th>kg</th> <th>m³</th> <th>kg</th> <th></th>	kV _{rms}		m³	kg	m³	kg	m ³	kg						
192TH2455.43165.46806.01270216TH2455.43215.46926.01295228TV2452.63404.3893228TV3002.84055.31006240TV3002.84075.31011258TH3622.84115.31026264TH3622.84115.31026276TH3622.84125.31028288TH3802.84145.31033300TM4002.84165.31038300TH4205.24525.51086300TH4205.24525.51086390TV4205.24835.51179396TH5506.76116.71357420TH5506.76126.71357	180	TH245	5.4	315	5.4	676	6.0	1262						
216 TH245 5.4 321 5.4 692 6.0 1295 228 TV245 2.6 340 4.3 893 - - 228 TV300 2.8 405 5.3 1006 - - 240 TV300 2.8 407 5.3 1011 - - 258 TH362 2.8 411 5.3 1026 - - 264 TH362 2.8 411 5.3 1026 - - 276 TH362 2.8 412 5.3 1028 - - 288 TH380 2.8 414 5.3 1033 - - 300 TM400 2.8 416 5.3 1038 - - 330 TH420 5.8 507 6.6 1163 - - 360 TH420 5.2 452 5.5 1086 - - <	192	TH245	5.4	316	5.4	680	6.0	1270						
228 TV245 2.6 340 4.3 893 - - 228 TV300 2.8 405 5.3 1006 - - 240 TV300 2.8 407 5.3 1011 - - 258 TH362 2.8 411 5.3 1026 - - 264 TH362 2.8 411 5.3 1026 - - 264 TH362 2.8 411 5.3 1026 - - 276 TH362 2.8 412 5.3 1028 - - 288 TH380 2.8 414 5.3 1033 - - 300 TM400 2.8 416 5.3 1038 - - 330 TH420 5.2 452 5.5 1086 - - 390 TV420 5.2 483 5.5 1179 - - 396 TH550 6.7 611 6.7 1357 - - <	216	TH245	5.4	321	5.4	692	6.0	1295						
228 TV300 2.8 405 5.3 1006 - - 240 TV300 2.8 407 5.3 1011 - - 258 TH362 2.8 411 5.3 1026 - - 264 TH362 2.8 411 5.3 1026 - - 276 TH362 2.8 412 5.3 1028 - - 288 TH380 2.8 414 5.3 1028 - - 300 TM400 2.8 416 5.3 1033 - - 300 TM400 2.8 416 5.3 1038 - - 300 TM400 2.8 507 6.6 1163 - - 300 TH420 5.2 452 5.5 1086 - - 390 TV420 5.2 483 5.5 1179 - - 396 TH550 6.7 611 6.7 1355 - -	228	TV245	2.6	340	4.3	893	-	-						
240 TV300 2.8 407 5.3 1011 - - 258 TH362 2.8 411 5.3 1026 - - 264 TH362 2.8 411 5.3 1026 - - 276 TH362 2.8 412 5.3 1028 - - 288 TH380 2.8 414 5.3 1033 - - 300 TM400 2.8 416 5.3 1038 - - 300 TM400 2.8 416 5.3 1038 - - 300 TM400 2.8 507 6.6 1163 - - 300 TH420 5.2 452 5.5 1086 - - 390 TV420 5.2 483 5.5 1179 - - 396 TH550 6.7 611 6.7 1355 - - 420 TH550 6.7 612 6.7 1357 - -	228	TV300	2.8	405	5.3	1006	-	-						
258 TH362 2.8 411 5.3 1026 - - 264 TH362 2.8 411 5.3 1026 - - 276 TH362 2.8 412 5.3 1028 - - 288 TH380 2.8 414 5.3 1033 - - 300 TM400 2.8 416 5.3 1038 - - 300 TM400 2.8 416 5.3 1038 - - 330 TH420 5.8 507 6.6 1163 - - 360 TH420 5.2 452 5.5 1086 - - 390 TV420 5.2 483 5.5 1179 - - 396 TH550 6.7 611 6.7 1355 - - 420 TH550 6.7 612 6.7 1357 - - <td>240</td> <td>TV300</td> <td>2.8</td> <td>407</td> <td>5.3</td> <td>1011</td> <td>-</td> <td>-</td> <td></td>	240	TV300	2.8	407	5.3	1011	-	-						
264 TH362 2.8 411 5.3 1026 - - 276 TH362 2.8 412 5.3 1028 - - 288 TH380 2.8 414 5.3 1033 - - 300 TM400 2.8 416 5.3 1038 - - 300 TM400 2.8 416 5.3 1038 - - 300 TM400 5.8 507 6.6 1163 - - 300 TH420 5.2 452 5.5 1086 - - 300 TV420 5.2 483 5.5 1179 - - 396 TH550 6.7 611 6.7 1355 - - 420 TH550 6.7 612 6.7 1357 - -	258	TH362	2.8	411	5.3	1026	-	-						
276 TH362 2.8 412 5.3 1028 - - 288 TH380 2.8 414 5.3 1033 - - 300 TM400 2.8 416 5.3 1038 - - 330 TH420 5.8 507 6.6 1163 - - 360 TH420 5.2 452 5.5 1086 - - 390 TV420 5.2 483 5.5 1179 - - 396 TH550 6.7 611 6.7 1355 - - 420 TH550 6.7 612 6.7 1357 - -	264	TH362	2.8	411	5.3	1026	-	-						
288 TH380 2.8 414 5.3 1033 - - 300 TM400 2.8 416 5.3 1038 - - 330 TH420 5.8 507 6.6 1163 - - 360 TH420 5.2 452 5.5 1086 - - 390 TV420 5.2 483 5.5 1179 - - 396 TH550 6.7 611 6.7 1355 - - 420 TH550 6.7 612 6.7 1357 - -	276	TH362	2.8	412	5.3	1028	-	-						
300 TM400 2.8 416 5.3 1038 - - 330 TH420 5.8 507 6.6 1163 - - 360 TH420 5.2 452 5.5 1086 - - 390 TV420 5.2 483 5.5 1179 - - 396 TH550 6.7 611 6.7 1355 - - 420 TH550 6.7 612 6.7 1357 - -	288	TH380	2.8	414	5.3	1033	-	-						
330 TH420 5.8 507 6.6 1163 - - 360 TH420 5.2 452 5.5 1086 - - 390 TV420 5.2 483 5.5 1179 - - 396 TH550 6.7 611 6.7 1355 - - 420 TH550 6.7 612 6.7 1357 - -	300	TM400	2.8	416	5.3	1038	-	-						
360 TH420 5.2 452 5.5 1086 - - 390 TV420 5.2 483 5.5 1179 - - 396 TH550 6.7 611 6.7 1355 - - 420 TH550 6.7 612 6.7 1357 - -	330	TH420	5.8	507	6.6	1163	-	-						
390 TV420 5.2 483 5.5 1179 - - 396 TH550 6.7 611 6.7 1355 - - 420 TH550 6.7 612 6.7 1357 - -	360	TH420	5.2	452	5.5	1086	-	-						
396 TH550 6.7 611 6.7 1355 - - 420 TH550 6.7 612 6.7 1357 - -	390	TV420	5.2	483	5.5	1179	-	-						
420 TH550 6.7 612 6.7 1357	396	TH550	6.7	611	6.7	1355	-	-	••••••					
	420	TH550	6.7	612	6.7	1357	-	-						

Rated voltage	Housing	Number of arresters per crate							
		One		Two					
Ur		Volume	Gross	Volume	Gross				
kV _{rms}		m ³	kg	m ³	kg				
444	TH550	3.7	602	5.5	1054				

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specifica-

tion. ABB reserves the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

Zinc Oxide Surge Arrester EXLIM R

Protection of switchgear, transformers and other equipment in high voltage systems against atmospheric and switching overvoltages. For use when requirements of lightning intensity, energy capability and pollution are moderate.

Other data can be ordered on request. Please contact your local sales representative.

Brief performance data

System voltages (U _m)	52 - 170 kV				
Rated voltages (U _r)	42 - 168 kV				
Nominal discharge current (IEC)	10 kA _{peak}				
Classifying current (ANSI/IEEE)	10 kA _{peak}				
Discharge current withstand strength:					
High current 4/10 µs	100 kA _{peak}				
Low current 2000 µs	600 A _{peak}				
Energy capability:					
Line discharge class (IEC)	Class 2				
[2 impulses, (IEC Cl. 8.5.5)	5.0 kJ/kV (U _r)]				
Fulfils/exceeds requirements of ANSI transmission-					
line discharge test for 170 kV systems.					
Short-circuit/Pressure relief capability	50 kA _{sym}				
External insulation	Fulfils/exceeds				
	standards				
Mechanical strength:					
Specified long-term load (SLL)	3000 Nm				
Specified short-term load (SSL)	7500 Nm				
Service conditions:					
Ambient temperature	-50 °C to +45 °C				
Design altitude	max. 1000 m				
Frequency	15 - 62 Hz				

EXLIM R Guaranteed protective data

Max. system voltage	Rated voltage	Max. continuous operating voltage ¹⁾		TOV capability ²⁾		Max. residual voltage with current wave							
		as per IEC	as per ANSI/IEEE		1	30/60 µs			8/20 μs				
U _m	Ur	Uc	мсоу	1 s	10 s	0.5 kA	1 kA	2 kA	5 kA	10 kA	20 kA	40 kA	
kV	kV	kV	kV	kV	kV	kVaaak	kV.	kVaaak	kV.	kVaaak	kV.eesk	kV.	
36 ³⁾	24	19.2	19.5	27.8	26.4	29 Z	51.3	53.8	58.7	62.2	69.7	79.6	
00	30	24.0	24.4	34.8	33.0	61 7	64.2	67.2	73.3	77 7	87.1	99.5	
	33	26.4	26.7	38.2	36.3	67.9	70.6	73.9	80.6	85.5	95.8	110	
	36	28.8	29.0	41.7	39.6	74.1	77.0	80.6	88.0	93.3	105	120	
	39	31.2	31.5	45.2	42.9	80.3	83.4	87.3	95.3	102	114	130	
52	42	34	34.0	48.7	46.2	86.4	89.8	94.0	103	109	122	140	
	45	36	36.5	52.2	49.5	92.6	96.2	101	110	117	131	150	
	48	38	39.0	55.6	52.8	98.8	103	108	118	125	140	160	
	51	41	41.3	59.1	56.1	105	109	115	125	133	148	170	
	54	43	43.0	62.6	59.4	112	116	121	132	140	157	180	
	60	48	48.0	69.6	66.0	124	129	135	147	156	175	199	
72	54	43	43.0	62.6	59.4	112	116	121	132	140	157	180	
	60	48	48.0	69.6	66.0	124	129	135	147	156	175	199	
	66	53	53.4	76.5	72.6	136	142	148	162	171	192	219	
	72	58	58.0	83.5	79.2	149	154	162	176	187	209	239	
	75	60	60.7	87.0	82.5	155	161	168	184	195	218	249	
	84	67	68.0	97.4	92.4	173	180	188	206	218	244	279	
100	75	60	60.7	87.0	82.5	155	161	168	184	195	218	249	
	84	67	68.0	97.4	92.4	173	180	188	206	218	244	279	
	90	72	72.0	104	99.0	186	193	202	220	234	262	299	
	96	77	77.0	111	105	198	206	215	235	249	279	319	
123	90	72	72.0	104	99.0	186	193	202	220	234	262	299	
	96	77	77.0	111	105	198	206	215	235	249	279	319	
	108	78	84.0	125	118	223	231	242	264	280	314	359	
	120	78	98.0	139	132	247	257	269	294	311	349	398	
	132	78	106	153	145	272	283	296	323	342	383	438	
	138	78	111	160	151	284	295	309	338	358	401	458	
145	108	86	86.0	125	118	223	231	242	264	280	314	359	
	120	92	98.0	139	132	247	257	269	294	311	349	398	
	132	92	106	153	145	272	283	296	323	342	383	438	
	138	92	111	160	151	284	295	309	338	358	401	458	
	144	92	115	167	158	297	308	323	352	373	418	478	
170	132	106	106	153	145	272	283	296	323	342	383	438	
	144	108	115	167	158	297	308	323	352	373	418	478	
	162	108	131	187	178	334	347	363	396	420	470	538	
	168	108	131	194	184	346	359	376	411	436	488	557	

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages U_c (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures.

 $\rm U_c$ has to be considered only when the actual system voltage is higher than the tabulated. Any arrester with Uc higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (2.5 kJ/kV (U_r)).

3) Arresters for system voltages 36 kV or below can be supplied, on request, when the order also includes arresters for higher system voltages.
EXLIM R Technical data for housings

Max. system voltage	Rated voltage	Housing	Creepage distance	External insulation *)			Dimensions					
U _m	Ur			1.2/50 μs dry	50 Hz wet (60s)	250/2500 μs wet	Mass	A _{max}	В	С	D	Fig.
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm	
52	42-60	CV052	1615	275	129	212	45	725	-	-	-	1
72	54-75	CM072	1615	275	129	212	46	725	-	-	-	1
	54-84	CV072	2651	394	221	320	62	997	-	-	-	1
100	75-96	CH100	2651	394	221	320	63	997	-	-	-	1
	84-96	CV100	3685	568	288	433	78	1268	-	-	-	1
123	90-108	CM123	2651	394	221	320	64	997	-	-	-	1
	90-138	CH123	3685	568	288	433	81	1268	-	-	-	1
	90-96	CV123	4266	669	350	532	103	1697	600	-	300	3
	108-138	CV123	4266	669	350	532	103	1697	-	-	-	2
145	108-144	CH145	3685	568	288	433	82	1268	-	-	-	1
	108-144	CV145	5302	788	442	640	119	1969	600	-	300	3
170	132-144	CM170	3685	568	288	433	82	1268	-	-	-	1
	132-144	CH170	4266	669	350	532	105	1697	600	-	300	3
	162-168	CH170	4266	669	350	532	105	1697	-	-	-	2
	132	CV170	5302	788	442	640	120	1969	600	800	400	4
	144-168	CV170	5302	788	442	640	122	1969	600	-	300	3
Neutral	-ground a	rresters										
52	30-36	CN052	1615	275	129	212	43	725	-	-	-	1
72	42-54	CN072	1615	275	129	212	45	725	-	-	-	1
100	60	CN100	1615	275	129	212	45	725	-	-	-	1
123	72	CN123	1615	275	129	212	62	725	-	-	-	1
	84-108	CN123	2651	394	221	320	64	997	-	-	-	1

120 CN170 3685 568

CN123

CN145

CN145

CN145

CN170

-

_

-

-

_

-

-

-

-

-

-

-

-

-

-

-

_

*) Sum of withstand voltages for empty units of arrester.

90-108

96-108

EXLIM R Technical data for housings

Line terminals

1HSA410 000-B Aluminium flag with other items in stainless steel

1HSA410 000-C Aluminium

1HSA410 000-D Stainless steel

Earth terminals

M12 bolts for connection to structure are not supplied by ABB. Required threaded grip length is 15-20 mm.

EXLIM R Shipping data

Rated voltage	Housing	Number of arresters per crate								
		One		Three		Six				
Ur		Volume	Gross	Volume	Gross	Volume	Gross			
kV _{rms}		m³	kg	m ³	kg	m³	kg			
24-39	CV036	0.3	74	0.5	171	1.0	337			
42-60	CV052	0.3	76	0.5	177	1.0	349			
54-75	CM072	0.3	77	0.5	180	1.0	355			
54-84	CV072	0.3	93	0.7	228	1.4	451	••••••		
75-96	CH100	0.3	94	0.7	231	1.4	457	•••••		
84-96	CV100	0.4	115	0.8	276	1.7	547	••••••		
90-108	CM123	0.3	92	0.7	234	1.4	463	•••••		
90-138	CH123	0.4	116	0.8	279	1.7	553	••••••		
90-138	CV123	0.7	131	1.4	367	-	-			
108-144	CH145	0.4	119	0.9	288	1.7	571	•••••		
108-144	CV145	0.7	147	1.4	415	-	-	•••••		
132-144	CM170	0.4	119	0.9	288	1.7	571	••••••		
132-168	CH170	0.7	133	1.4	373	-	-	••••••		
132-168	CV170	0.7	148	1.4	418	-	-			

Neutral-ground arresters

Neutral-yi													
30-36	CN052	0.3	75	0.5	175	1.0	340						
42-54	CN072	0.3	80	0.5	180	1.0	350						
60	CN100	0.3	80	0.5	180	1.0	350						
72	CN123	0.3	80	0.5	180	1.0	355						
84-108	CN123	0.3	95	0.7	235	1.4	465						
120	CN123	0.4	115	0.8	280	1.7	555						
84	CN145	0.3	95	0.7	230	1.4	455						
90-108	CN145	0.3	95	0.7	235	1.4	465						
120	CN145	0.4	115	0.8	280	1.7	555						
96-108	CN170	0.3	95	0.7	235	1.4	465						
120	CN170	0.4	115	0.8	280	1.7	555						

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specifica-

tion. ABB reserves the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

Zinc Oxide Surge Arrester EXLIM Q-E

Protection of switchgear, transformers and other equipment in high voltage systems against atmospheric and switching overvoltages.

- in areas with high lightning intensity and high energy requirements.
- where grounding or shielding conditions are poor or incomplete.

Other data can be ordered on request. Please contact your local sales representative.

Brief performance data

System voltages (U _m)	52 - 245 kV
Rated voltages (U _r)	42 - 228 kV
Nominal discharge current (IEC)	10 kA _{peak}
Classifying current (ANSI/IEEE)	10 kA _{peak}
Discharge current withstand strength:	
High current 4/10 µs	100 kA _{peak}
Low current 2000 µs	1000 A _{peak}
Energy capability:	
Line discharge class (IEC)	Class 3
[2 impulses, (IEC Cl. 8.5.5)	7.8 kJ/kV (U _r)]
Fulfils/exceeds requirements of ANSI transmission-	
line discharge test for 245 kV systems.	
Short-circuit/Pressure relief capability	65 kA _{sym}
External insulation	Fulfils/exceeds standards
Mechanical strength:	
Specified long-term load (SLL)	3000 Nm
Specified short-term load (SSL)	7500 Nm
Service conditions:	····
Ambient temperature	-50 °C to +45 °C
Design altitude	max. 1000 m
Frequency	15 - 62 Hz

EXLIM Q-E Guaranteed protective data 36 - 145 kV

Max. system voltage	Rated voltage	Max. cont operating	inuous voltage ¹⁾	TOV capa	bility ²⁾	Max. residual voltage with current wave						
		as per IEC	as per ANSI/IEEE		1	30/60 µs	1	1	8/20 µs	1	1	1
U _m	Ur	Uc	MCOV	1 s	10 s	0.5 kA	1 kA	2 kA	5 kA	10 kA	20 kA	40 kA
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}
36 ³⁾	24	19.2	19.5	27.8	26.4	46.1	47.6	49.5	53.6	56.4	62.1	69.4
	30	24.0	24.4	34.8	33.0	57.6	59.5	61.8	67.0	70.5	77.6	86.8
	33	26.4	26.7	38.2	36.3	63.4	65.4	68.0	73.7	77.6	85.4	95.4
	36	28.8	29.0	41.7	39.6	69.2	71.4	74.2	80.4	84.6	93.1	105
	39	31.2	31.5	45.2	42.9	74.9	77.3	80.3	87.1	91.7	101	113
52	42	34	34.0	48.7	46.2	80.7	83.3	86.5	93.8	98.7	109	122
	48	38	39.0	55.6	52.8	92.2	95.1	98.9	108	113	125	139
	51	41	41.3	59.1	56.1	98.0	102	105	114	120	132	148
	54	43	43.0	62.6	59.4	104	107	112	121	127	140	157
	60	48	48.0	69.6	66.0	116	119	124	134	141	156	174
72	54	43	43.0	62.6	59.4	104	107	112	121	127	140	157
	60	48	48.0	69.6	66.0	116	119	124	134	141	156	174
	66	53	53.4	76.5	72.6	127	131	136	148	156	171	191
	72	58	58.0	83.5	79.2	139	143	149	161	170	187	209
	75	60	60.7	87.0	82.5	144	149	155	168	177	194	217
	78	62	63.1	90.4	85.8	150	155	161	175	184	202	226
	81	65	65.6	93.9	89.1	156	161	167	181	191	210	235
	84	67	68.0	97.4	92.4	162	167	173	188	198	218	243
100	84	67	68.0	97.4	92.4	162	167	173	188	198	218	243
	90	72	72.0	104	99.0	173	179	186	201	212	233	261
	96	77	77.0	111	105	185	191	198	215	226	249	278
123	90	72	72.0	104	99.0	173	179	186	201	212	233	261
	96	77	77.0	111	105	185	191	198	215	226	249	278
	108	78	84.0	125	118	208	214	223	242	254	280	313
	120	78	98.0	139	132	231	238	248	268	282	311	347
	132	78	106	153	145	254	262	272	295	311	342	382
	138	78	111	160	151	265	274	285	309	325	357	399
145	108	86	86.0	125	118	208	214	223	242	254	280	313
	120	92	98.0	139	132	231	238	248	268	282	311	347
	132	92	106	153	145	254	262	272	295	311	342	382
	138	92	111	160	151	265	274	285	309	325	357	399
	144	92	115	167	158	277	286	297	322	339	373	417

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages Uc (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. U_c has to be considered only when the actual system voltage is higher than the tabulated.

Any arrester with U_c higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (4.5 kJ/kV (U_r)).

3) Arresters for system voltages 36 kV or below can be supplied, on request, when the order also includes arresters for higher system voltages.

Arresters with lower or higher rated voltages may be available on request for special applications.

EXLIM Q-E Guaranteed protective data 170 - 245 kV

Max. system voltage	Rated voltage	Max. cor operating	ntinuous g voltage ¹⁾	bability 2)	Max. residual voltage with current wave								
		as per IEC	as per ANSI/IEEE			30/60 µs			8/20 µs				
U _m	Ur	Uc	MCOV	1 s	10 s	0.5 kA	1 kA	2 kA	5 kA	10 kA	20 kA	40 kA	
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}							
170	132	106	106	153	145	254	262	272	295	311	342	382	
	144	108	115	167	158	277	286	297	322	339	373	417	
	162	108	131	187	178	312	321	334	362	381	419	469	
	168	108	131	194	184	323	333	346	376	395	435	486	
245	180	144	144	208	198	346	357	371	402	423	466	521	
	192	154	154	222	211	369	381	396	429	452	497	555	
	198	156	160	229	217	381	393	408	443	466	512	573	
	210	156	170	243	231	404	417	433	469	494	543	608	
	216	156	175	250	237	415	428	445	483	508	559	625	
	219	156	177	254	240	421	434	451	489	515	567	634	
	222	156	179	257	244	427	440	458	496	522	574	642	
	228	156	180	264	250	438	452	470	510	536	590	660	

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages Uc (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. U_c has to be considered only when the actual system voltage is higher than the tabulated. Any arrester with U_c higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (4.5 kJ/kV (U_r)).

Arresters with lower or higher rated voltages may be available on request for special applications.

EXLIM Q-E Technical data for housings

Max. system voltage	Rated voltage	Housing	Creepage distance	External ins		Dimensions							
U _m	Ur			1.2/50 µs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	в	С	D	Fig.
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm	
36	24-39	EV036	1615	275	129	133	n.a.	45	725	-	-	-	1
52	42-60	EV052	1615	275	129	133	n.a.	48	725	-	-	-	1
72	54-84	EV072	2651	394	221	203	n.a.	66	997	-	-	-	1
100	84-96	EH100	2651	394	221	203	n.a.	67	997	-	-	-	1
	84-96	EV100	3685	568	287	261	n.a.	82	1268	-	-	-	1
123	90-108	EM123	2651	394	221	203	n.a.	69	997	-	-	-	1
	90-138	EH123	3685	568	287	261	n.a.	88	1268	-	-	-	1
	90-96	EV123	4266	669	350	336	n.a.	106	1697	600	-	300	3
	108-138	EV123	4266	669	350	336	n.a.	110	1697	-	-	-	2
145	108-144	EH145	3685	568	287	261	n.a.	88	1268	-	-	-	1
	108-120	EV145	5302	788	442	406	n.a.	124	1969	600	-	300	3
	132-144	EV145	5302	788	442	406	n.a.	125	1969	-	-	-	2
170	132-144	EM170	3685	568	287	261	n.a.	88	1268	-	-	-	1
	132	EH170	4266	669	350	336	n.a.	111	1697	600	-	300	3
	144-168	EH170	4266	669	350	336	n.a.	113	1697	-	-	-	2
	132-144	EV170	5302	788	442	406	n.a.	127	1969	600	-	300	3
	162-168	EV170	5302	788	442	406	n.a.	128	1969	-	-	-	2
245	180-198	EH245	6336	962	508	464	753	151	2240	600	800	400	4
	210-228	EH245	6336	962	508	464	753	153	2240	600	-	300	3
	180-228	EV245	7953	1182	663	609	960	201	2941	800	1400	700	5
Neutral-	around a	rresters											
52	30-36	EN052	1615	275	129	133	n.a.	45	725	-	_	-	1
72	42-54	EN072	1615	275	129	133	n.a.	48	725	-	-	-	1
100	60	EN100	1615	275	129	133	n.a.	48	725	-	-	-	1
123	72-108	EN123	2651		221	203	n.a.	69	997	-	-	-	1
	120	EN123	3685	568	287	261	n.a.	88	1268	-	-	-	1
145	84-108	EN145	2651	394	221	203	n.a.	69	997	-	-	-	1
	120	EN145	3685	568	287	261	n.a.	88	1268	-	-	-	1
170	96-108	EN170	2651	394	221	203	n.a.	69	997	-	-	-	1
	120	EN170	3685	568	287	261	n.a.	88	1268	-	-	-	1
245	108	EN245	2651	394	221	203	n.a.	69	997	-	-	-	1
	120-144	EN245	3685	568	287	261	n.a.	88	1268	-	-	-	1
••••••	•••••••••••••••••••••••••••••••••••••••	• ••••••	• ••••••	•••••••••••••••••••••••••••••••	••••••••	•••••••	• •••••••	•••••••••••	• • • • • • • • • • • • • • • • • • • •	••••	••••	···•	•••••

 $^{\ast)}$ Sum of withstand voltages for empty units of arrester.

EXLIM Q-E Technical data for housings

Line terminals

1HSA410 000-A Aluminium

1HSA410 000-B Aluminium flag with other items in stainless steel

1HSA410 000-C Aluminium

Stainless steel

82 Technical information | ABB Surge Arresters – Buyer's Guide

EXLIM Q-E Shipping data

Housing	Number of arresters per crate										
	One		Three		Six						
	Volume	Gross	Volume	Gross	Volume	Gross					
	m ³	kg	m ³	kg	m³	kg					
EV036	0.3	76	0.5	177	1.0	349					
EV052	0.3	79	0.5	186	1.0	367					
EV072	0.3	97	0.7	240	1.4	475					
EH100	0.3	98	0.7	243	1.4	481					
EV100	0.4	119	0.8	288	1.7	571					
EM123	0.3	100	0.7	249	1.4	493					
EH123	0.4	125	0.8	306	1.7	607					
EV123	0.7	138	1.4	389	-	-					
EH145	0.4	125	0.9	306	1.7	607					
EV145	0.7	152	1.4	431	-	-					
EM170	0.4	125	0.9	306	1.7	607					
EH170	0.7	141	1.4	398	-	-					
EV170	0.7	156	1.4	662	-	-					
EH245	0.8	181	1.7	518	-	-					
EV245	1.7	320	3.1	743	-	-					
	Housing EV036 EV052 EV072 EH100 EV100 EM123 EH123 EV123 EH123 EV123 EH145 EV145 EM170 EH170 EH170 EV170 EH245 EV245	Housing Number of a One Volume m³ m³ EV036 0.3 EV052 0.3 EV072 0.3 EV100 0.4 EV123 0.3 EV123 0.4 EV145 0.7 EH145 0.4 EV170 0.7 EH170 0.7 EV170 0.7 EV170 0.7 EV170 1.7	Housing Number of arresters per crate One Volume Gross m³ kg EV036 0.3 76 EV052 0.3 79 EV072 0.3 97 EV100 0.4 119 EM123 0.3 100 EH123 0.4 125 EV123 0.7 138 EH145 0.4 125 EV145 0.7 152 EM170 0.4 125 EH170 0.7 141 EV170 0.7 156 EH245 0.8 181 EV245 1.7 320	Housing Number of arresters per crate One Three Volume Gross Volume m³ kg m³ EV036 0.3 76 0.5 EV052 0.3 79 0.5 EV072 0.3 97 0.7 EH100 0.3 98 0.7 EV102 0.3 100 0.7 EH100 0.4 119 0.8 EV123 0.4 125 0.8 EV123 0.7 138 1.4 EH145 0.4 125 0.9 EV145 0.7 152 1.4 EM170 0.4 125 0.9 EV145 0.7 152 1.4 EM170 0.7 141 1.4 EV170 0.7 156 1.4 EV170 0.7 156 1.4 EV170 0.8 181 1.7 EV245 1.7 320	Housing Number of arresters per crate One Three Volume Gross Three Volume Gross m ³ kg m ³ kg for ss for ss EV036 0.3 76 0.5 177 EV052 0.3 79 0.5 186 EV072 0.3 97 0.7 240 EH100 0.3 98 0.7 243 EV102 0.3 119 0.8 288 EM123 0.3 100 0.7 249 EH123 0.4 125 0.8 306 EV123 0.7 138 1.4 389 EH145 0.4 125 0.9 306 EV145 0.7 152 1.4 431 EM170 0.4 125 0.9 306 EH145 0.7 156 1.4 662 EH170 0.7 156 1.4 662 EH245 0.8	Housing Number of arresters per crate Three Six One Gross Volume Gross Volume Six Volume Gross Volume Gross Volume m³ EV036 0.3 76 0.5 177 1.0 EV052 0.3 79 0.5 186 1.0 EV072 0.3 97 0.7 240 1.4 EH100 0.3 98 0.7 243 1.4 EV102 0.3 100 0.7 243 1.4 EH100 0.4 119 0.8 288 1.7 EM123 0.4 125 0.8 306 1.7 EV123 0.7 138 1.4 389 - EH145 0.4 125 0.9 306 1.7 EV123 0.7 152 1.4 431 - EV145 0.7 152 0.9 306 1.7 <td>Housing One Number of arrestreper crate Three Six Volume Gross Volume Gross Volume Gross Volume Gross Gross Gross Six Volume Gross Gross Gross Gross Main kg main kg Main Kg Main Kg Main Kg Gross Gross Kg Main Kg <</td>	Housing One Number of arrestreper crate Three Six Volume Gross Volume Gross Volume Gross Volume Gross Gross Gross Six Volume Gross Gross Gross Gross Main kg main kg Main Kg Main Kg Main Kg Gross Gross Kg Main Kg <				

Neutral-ground arresters

J							
30-36	EN052	0.3	80	0.5	180	1.0	350
42-54	EN072	0.3	80	0.5	190	1.0	370
60	EN100	0.3	80	0.5	190	1.0	370
72-108	EN123	0.3	100	0.7	250	1.4	495
120	EN123	0.4	125	0.8	310	1.7	610
84-108	EN145	0.3	100	0.7	250	1.4	495
120	EN145	0.4	125	0.8	310	1.7	610
96-108	EN170	0.3	100	0.7	250	1.4	495
120	EN170	0.4	125	0.8	310	1.7	610
108	EN245	0.3	100	0.7	250	1.4	495
120-144	EN245	0.4	125	0.8	310	1.7	610
			···· •······	·····			

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specifica-

tion. ABB reserves the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

Zinc Oxide Surge Arrester EXLIM Q-D

Protection of switchgear, transformers and other equipment in high voltage systems against atmospheric and switching overvoltages.

- in areas with high lightning intensity and high energy requirements.
- where grounding or shielding conditions are poor or incomplete.

Brief performance data

System voltages (U _m)	170 - 420 kV
Rated voltages (U _r)	132 - 420 kV
Nominal discharge current (IEC)	10 kA _{peak}
Classifying current (ANSI/IEEE)	10 kA _{peak}
Discharge current withstand strength:	
High current 4/10 µs	100 kA _{peak}
Low current 2000 µs	1000 A _{peak}
Energy capability:	
Line discharge class (IEC)	Class 3
[2 impulses, (IEC CI. 8.5.5)	7.8 kJ/kV (U _r)]
Fulfils/exceeds requirements of ANSI transmission-	
line discharge test for 245 kV systems.	
Short-circuit/Pressure relief capability	65 kA _{sym}
External insulation	Fulfils/exceeds
	standards
Mechanical strength:	
Specified long-term load (SLL)	7200 Nm
Specified short-term load (SSL)	18000 Nm
Service conditions:	
	-50 °C to +45 °C
	max 1000 m
Frequency	15 - 62 Hz

EXLIM Q-D Guaranteed protective data

Max. system voltage	Rated voltage	Max. cont operating	tinuous voltage 1)	¹⁾ TOV capability ²⁾ Max. residual voltage with current wave								
		as per IEC	as per ANSI/IEEE			30/60 µs	5		8/20 µs			
U _m	Ur	Uc	мсоу	1 s	10 s	0.5 kA	1 kA	2 kA	5 kA	10 kA	20 kA	40 kA
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}						
170	132	106	106	153	145	254	262	272	295	311	342	382
	144	108	115	167	158	277	286	297	322	339	373	417
	162	108	131	187	178	312	321	334	362	381	419	469
	168	108	131	194	184	323	333	346	376	395	435	486
245	180	144	144	208	198	346	357	371	402	423	466	521
	192	154	154	222	211	369	381	396	429	452	497	555
	198	156	160	229	217	381	393	408	443	466	512	573
	210	156	170	243	231	404	417	433	469	494	543	608
	216	156	175	250	237	415	428	445	483	508	559	625
	219	156	177	254	240	421	434	451	489	515	567	634
	228	156	180	264	250	438	452	470	510	536	590	660
300	216	173	175	250	237	415	428	445	483	508	559	625
	228	182	182	264	250	438	452	470	510	536	590	660
	240	191	191	278	264	461	476	495	536	564	621	694
	258	191	209	299	283	496	512	532	576	607	667	746
	264	191	212	306	290	507	523	544	590	621	683	764
362	258	206	209	299	283	496	512	532	576	607	667	746
	264	211	212	306	290	507	523	544	590	621	683	764
	276	211	221	320	303	530	547	569	617	649	714	798
	288	230	230	334	316	553	571	593	643	677	745	833
420	330	264	267	382	363	634	654	680	737	776	854	954
	336	267	272	389	369	646	666	692	751	790	869	972
	360	267	291	417	396	692	714	742	804	846	931	1046
	372	267	301	431	409	715	737	766	831	875	962	1080
	378	267	306	438	415	726	749	779	844	889	978	1098
	381	267	308	441	419	732	755	785	851	896	985	1106
	390	267	315	452	429	749	773	803	871	917	1013	1132
	396	267	318	459	435	761	785	816	885	931	1029	1150
	420	267	335	487	462	807	833	865	938	987	1091	1219

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages U_c (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. Uc has to be considered only when the actual system voltage is higher than the tabulated.

Any arrester with U_c higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (4.5 kJ/kV (Ur)).

Arresters with lower or higher rated voltages may be available on request for special applications.

EXLIM Q-D Technical data for housings

Max. system voltage	Rated voltage	Housing	Creepage distance	External ins		Dimensions							
U _m	Ur			1.2/50 μs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	в	с	D	Fig.
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm	
170	132	DH170	4432	774	378	359	n.a.	155	1645	600	-	300	2
	144-168	DH170	4432	774	378	359	n.a.	155	1645	-	-	-	1
	132-144	DV170	6570	1172	556	546	924	230	2585	800	600	400	4
	162-168	DV170	6570	1172	556	546	924	230	2585	600	-	300	3
245	180-198	DH245	6570	1172	556	546	924	235	2585	900	600	500	4
	210-219	DH245	6570	1172	556	546	924	235	2585	800	600	400	4
	228	DH245	6570	1172	556	546	924	240	2585	600	-	300	3
	180	DV245	7717	1360	656	632	1078	270	2915	1400	800	700	4
	192-198	DV245	7717	1360	656	632	1078	270	2915	1200	800	600	4
	210	DV245	7717	1360	656	632	1078	270	2915	900	600	500	4
	216-228	DV245	7717	1360	656	632	1078	270	2915	800	600	400	4
300	228	DM300	6570	1172	556	546	924	240	2585	800	600	500	4
	240-264	DM300	6570	1172	556	546	924	245	2585	900	600	400	4
	216	DH300	7717	1360	656	632	1078	275	2915	1400	800	700	4
	228-240	DH300	7717	1360	656	632	1078	280	2915	1200	800	600	4
	258-264	DH300	7717	1360	656	632	1078	275	2915	900	600	500	5
	216	DV300	9855	1758	834	819	1386	350	3859	1600	800	1200	5
	228-240	DV300	9855	1758	834	819	1386	355	3859	1600	800	1000	5
	258-264	DV300	9855	1758	834	819	1386	355	3859	1200	800	800	4
362	258-264	DM362	7717	1360	656	632	1078	280	2915	1400	800	700	4
	276-288	DM362	7717	1360	656	632	1078	285	2915	1200	800	600	4
	258-288	DH362	9855	1758	834	819	1386	360	3859	1600	800	1000	5
	258-264	DV362	12149	2134	1034	991	1694	415	4520	1800	1000	1000	5
	276-288	DV362	12149	2134	1034	991	1694	415	4520	1800	1000	1000	5
420	330-360	DM420	8864	1458	756	718	1232	325	3245	1600	1000	650	4
	330-360	DH420	11002	1946	934	905	1540	400	4190	1800	1000	1000	5
	372-396	DH420	11002	1946	934	905	1540	400	4190	1400	800	700	5
	420	DH420	11002	1946	934	905	1540	400	4190	1200	800	600	5
	330-360	DV420	13296	2322	1134	1077	1848	465	4850	1800	1000	1000	5
	372-420	DV420	13296	2322	1134	1077	1848	465	4850	1800	1000	1000	5

*) Sum of withstand voltages for empty units of arrester.

EXLIM Q-D Technical data for housings

Figure 4

Figure 5

Line terminals

1HSA410 000-A Aluminium

1HSA410 000-B Aluminium flag with other items in stainless steel

1HSA410 000-C Aluminium

1HSA410 000-D Stainless steel

EXLIM Q-D Shipping data

Rated voltage	Housing	ng Number of arresters per crate								
		One		Three		Six				
Ur		Volume	Gross	Volume	Gross	Volume	Gross			
kV _{rms}		m³	kg	m³	kg	m³	kg			
132-168	DH170	0.5	195	1.7	365	1.7	530			
132-168	DV170	1.4	275	2.8	545	2.8	790			
180-228	DH245	1.4	280	2.8	555	2.8	805			
180	DV245	2.4	375	4.2	685	4.1	960			
192-198	DV245	2.2	360	3.8	670	3.9	950			
210-228	DV245	1.7	315	3.1	615	3.1	890			
228-264	DM300	1.4	290	2.8	575	2.8	835			
216	DH300	2.4	380	4.2	695	4.1	975			
228-240	DH300	2.2	365	3.8	680	3.9	965			
258-264	DH300	1.7	320	3.1	630	3.1	910			
216-240	DV300	2.9	500	5.7	930	6.1	1315			
258-264	DV300	1.9	445	3.6	875	5.0	1240			
258-264	DM362	2.4	385	4.2	705	4.1	995			
276-288	DM362	2.2	375	3.8	690	3.9	985			
258-288	DH362	2.9	505	5.7	940	6.1	1330			
258-264	DV362	3.2	575	6.3	1075	6.7	1535			
276-288	DV362	3.2	575	6.0	1060	6.7	1525			
330-360	DM420	4.2	475	4.9	835	5.3	1175			
330-360	DH420	3.2	545	6.0	1015	6.7	1430			
372-396	DH420	2.4	505	5.6	970	5.5	1380			
420	DH420	2.2	485	5.2	945	5.3	1370			
330-360	DV420	3.2	615	6.6	1150	7.0	1450			

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specification. ABB reserves the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

Zinc Oxide Surge Arrester EXLIM P

Protection of switchgear, transformers and other equipment in high voltage systems against atmospheric and switching overvoltages.

- in areas with very high lightning intensity.
- where grounding or shielding conditions are poor or incomplete.
- for important installations.

i

where energy requirements are very high (e.g. very long lines, capacitor protection).

Other data can be ordered on request. Please contact your local sales representative.

Brief performance data

System voltages (U _m)	52 - 550 kV
Rated voltages (U _r)	42 - 444 kV
Nominal discharge current (IEC)	20 kA _{peak}
Classifying current (ANSI/IEEE)	10/15 kA _{peak}
Discharge current withstand strength:	
High current 4/10 µs	100 kA _{peak}
Low current 2000 µs	1500 A _{peak}
Energy capability:	
Line discharge class (IEC)	Class 4
[2 impulses, (IEC Cl. 8.5.5)	10.8 kJ/kV (U _r)]
Fulfils/exceeds requirements of ANSI transmission-	
line discharge test for 550 kV systems.	
Short-circuit/Pressure relief capability	65 kA _{sym}
External insulation	Fulfils/exceeds
	standards
Mechanical strength:	
Specified long-term load (SLL)	7200 Nm
Specified short-term load (SSL)	18000 Nm
Service conditions:	
Ambient temperature	-50 °C to +45 °C
Design altitude	max. 1000 m
Frequency	15 - 62 Hz

EXLIM P Guaranteed protective data 36 - 170 kV

Max. system voltage	Rated voltage	Max. cor operating	ntinuous g voltage ¹⁾	TOV cap	bability ²⁾	Max. res	sidual volta	ge with cur	rrent wave				
		as per IEC	as per ANSI/IEEE			30/60 µs	3		8/20 µs				
U _m	Ur	Uc	мсоу	1 s	10 s	1 kA	2 kA	3 kA	5 kA	10 kA	20 kA	40 kA	
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}							
36 ³⁾	30	24.0	24.4	34.8	33.0	58.5	60.7	62.2	64.9	68.3	74.8	81.9	
	33	26.4	26.7	38.2	36.3	64.4	66.7	68.4	71.4	75.1	82.3	90.1	
	36	28.8	29.0	41.7	39.6	70.2	72.8	74.6	77.9	81.9	89.7	98.3	
	39	31.2	31.5	45.2	42.9	76.1	78.8	80.8	84.3	88.8	97.2	107	
52	42	34	34.0	48.7	46.2	81.9	84.9	87.0	90.8	95.6	105	115	
	48	38	39.0	55.6	52.8	93.6	97.0	99.4	104	110	120	132	
	54	43	43.0	62.6	59.4	106	110	112	117	123	135	148	
	60	48	48.0	69.6	66.0	117	122	125	130	137	150	164	
72	54	43	43.0	62.6	59.4	106	110	112	117	123	135	148	
	60	48	48.0	69.6	66.0	117	122	125	130	137	150	164	
	66	53	53.4	76.5	72.6	129	134	137	143	151	165	181	
	72	58	58.0	83.5	79.2	141	146	150	156	164	180	197	
	75	60	60.7	87.0	82.5	147	152	156	163	171	187	205	
	78	62	63.1	90.4	85.8	153	158	162	169	178	195	213	
	84	67	68.0	97.4	92.4	164	170	174	182	192	210	230	
100	84	67	68.0	97.4	92.4	164	170	174	182	192	210	230	
	90	72	72.0	104	99.0	176	182	187	195	205	225	246	
	96	77	77.0	111	105	188	194	199	208	219	240	263	
123	90	72	72.0	104	99.0	176	182	187	195	205	225	246	
	96	77	77.0	111	105	188	194	199	208	219	240	263	
	108	78	84.0	125	118	211	219	224	234	246	270	295	
	120	78	98.0	139	132	234	243	249	260	273	299	328	
	132	78	106	153	145	258	267	274	286	301	329	361	
	138	78	111	160	151	270	279	286	299	314	344	377	
145	108	86	86.0	125	118	211	219	224	234	246	270	295	
	120	92	98.0	139	132	234	243	249	260	273	299	328	
	132	92	106	153	145	258	267	274	286	301	329	361	
	138	92	111	160	151	270	279	286	299	314	344	377	
	144	92	115	167	158	281	291	299	312	328	359	394	
170	132	106	106	153	145	258	267	274	286	301	329	361	
	144	108	115	167	158	281	291	299	312	328	359	394	
	150	108	121	174	165	293	304	311	325	342	374	410	
	162	108	131	187	178	316	328	336	351	369	404	443	
	168	108	131	194	- 184	328	340	348	364	383	419	459	

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages U_c (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. U_c has to be considered only when the actual system voltage is higher than the tabulated.

Any arrester with Uc higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (7.0 kJ/kV (U_r)).

3) Arresters for system voltages 36 kV or below can be supplied, on request, when the order also includes arresters for higher system voltages.

Arresters with lower or higher rated voltages may be available on request for special applications.

EXLIM P Guaranteed protective data 170 - 550 kV

Max. system voltage	Rated voltage	Max. conti operating	inuous voltage ¹⁾	TOV capa	bility ²⁾	Max. resid	dual voltage	e with curre	ent wave			
		as per IEC	as per ANSI/IEEE		1	30/60 µs	1	1	8/20 µs	1	1	1
U _m	Ur	U _c	мсоу	1 s	10 s	1 kA	2 kA	3 kA	5 kA	10 kA	20 kA	40 kA
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}						
245	180	144	144	208	198	351	364	373	390	410	449	492
	192	154	154	222	211	375	388	398	415	437	479	525
	198	156	160	229	217	387	400	410	428	451	494	541
	210	156	170	243	231	410	425	435	454	478	524	574
	216	156	174	250	237	422	437	448	467	492	539	590
	219	156	177	254	240	427	443	454	474	499	546	598
	228	156	180	264	250	445	461	473	493	519	568	623
300	216	173	174	250	237	422	437	448	467	492	539	590
	228	182	182	264	250	445	461	473	493	519	568	623
	240	191	191	278	264	468	485	497	519	546	598	656
	258	191	209	299	283	504	522	535	558	587	643	705
	264	191	212	306	290	515	534	547	571	601	658	721
362	258	206	209	299	283	504	522	535	558	587	643	705
	264	211	212	306	290	515	534	547	571	601	658	721
	276	221	221	320	303	539	558	572	597	628	688	754
	288	230	230	334	316	562	582	597	623	656	718	787
420	330	264	267	382	363	644	667	684	714	751	823	901
	336	267	272	389	369	656	679	696	727	765	838	918
	360	267	291	417	396	702	728	746	779	819	897	983
	372	267	301	431	409	726	752	771	804	847	927	1021
	378	267	306	438	415	737	764	783	817	860	942	1037
	381	267	308	441	419	743	770	789	824	867	950	1045
	390	267	315	452	429	761	788	808	843	888	972	1070
	396	267	318	459	435	773	800	820	856	901	987	1086
	420	267	336	487	462	819	849	870	908	956	1051	1152
550	396	317	318	459	435	773	800	820	856	901	987	1086
	420	336	336	487	462	819	849	870	908	956	1051	1152
	444	349	353	515	488	866	897	920	960	1015	1111	1217

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages U_c (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. U_c has to be considered only when the actual system voltage is higher than the tabulated. Any arrester with Uc higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (7.0 kJ/kV (Ur)).

Arresters with lower or higher rated voltages may be available on request for special applications.

EXLIM P Technical data for housings 36 - 362 kV

Max. system voltage	Rated voltage	Housing	Creepage distance	External ins		Dimensions							
U _m	Ur			1.2/50 μs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	в	с	D	Fig.
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm	
36	30-39	GV036	1444	318	151	135	228	85	785	-	-	-	1
52	42-60	GH052	1444	318	151	135	228	90	785	-	-	-	1
	42-60	GV052	3285	586	278	273	462	115	1315	-	-	-	1
72	54-84	GV072	3285	586	278	273	462	115	1315	-	-	-	1
100	84-96	GV100	3285	586	278	273	462	120	1315	-	-	-	1
123	90-138	GH123	3285	586	278	273	462	120	1315	-	-	-	1
	90-138	GV123	4432	774	378	359	616	150	1645	-	-	-	1
145	108-138	GM145	3285	586	278	273	462	120	1315	-	-	-	1
	108-120	GH145	4432	774	378	359	616	150	1645	-	-	-	1
	132-144	GH145	4432	774	378	359	616	155	1645	-	-	-	1
	108-144	GV145	4729	904	429	408	690	200	2060	-	-	-	2
170	132-168	GH170	4432	774	378	359	616	155	1645	-	-	-	1
	132	GV170	6570	1172	556	546	924	230	2585	800	600	400	4
	144-150	GV170	6570	1172	556	546	924	230	2585	600	-	300	3
	162-168	GV170	6570	1172	556	546	924	230	2585	-	-	-	2
245	180	GH245	6570	1172	556	546	924	240	2585	900	600	500	4
	192-198	GH245	6570	1172	556	546	924	240	2585	800	600	400	4
	210-228	GH245	6570	1172	556	546	924	240	2585	600	-	300	3
	180	GV245	7717	1360	656	632	1078	275	2915	1200	800	600	4
	192-198	GV245	7717	1360	656	632	1078	270	2915	900	600	500	4
	210	GV245	7717	1360	656	632	1078	270	2915	800	600	400	4
	216-228	GV245	7717	1360	656	632	1078	270	2915	600	-	300	3
300	228	GM300	6570	1172	556	546	924	245	2585	900	600	500	4
	240-264	GM300	6570	1172	556	546	924	245	2585	900	600	400	4
	216	GH300	7717	1360	656	632	1078	280	2915	1400	800	700	4
	228-264	GH300	7717	1360	656	632	1078	275	2915	900	600	500	4
	216	GV300	9855	1758	834	819	1386	355	3860	1600	800	1000	5
	228	GV300	9855	1758	834	819	1386	355	3860	1400	800	700	5
	240	GV300	9855	1758	834	819	1386	355	3860	1200	800	600	5
	258-264	GV300	9855	1758	834	819	1386	355	3860	1200	800	600	5
362	258	GM362	7717	1360	656	632	1078	285	2915	1400	800	700	4
	264-288	GM362	7717	1360	656	632	1078	285	2915	1200	800	600	4
	258-264	GH362	9855	1758	834	819	1386	360	3860	1600	800	1000	5
	276-288	GH362	9855	1758	834	819	1386	360	3860	1400	800	700	5
	258-288	GV362	12149	2134	1034	991	1694	420	4850	1600	800	1200	5

*) Sum of withstand voltages for empty units of arrester.

EXLIM P Technical data for housings 36 - 362 kV

Max. system voltage	Rated voltage	Housing	Creepage distance	External ins	ulation *)			Dimensions						
U _m	Ur			1.2/50 μs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	в	С	D	Fig.	
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm		
420	330-360	GM420	8864	1548	756	718	1232	325	3245	1200	800	600	4	
	330-336	GH420	11002	1946	934	905	1540	405	4190	1800	1000	1000	5	
	360-372	GH420	11002	1946	934	905	1540	405	4190	1400	800	700	5	
	378-420	GH420	11002	1946	934	905	1540	405	4190	1200	800	600	5	
	330	GV420	13296	2322	1134	1077	1848	460	4850	1600	800	1000	5	
	336-396	GV420	13296	2322	1134	1077	1848	460	4850	1600	800	1000	5	
	420	GV420	13296	2322	1134	1077	1848	460	4850	1400	800	700	5	
550	396	GM550	11002	1946	934	905	1540	425	4500	2000	1000	1200	6	
	420	GM550	11002	1946	934	905	1540	420	4500	1800	1000	1000	6	
	444	GM550	11002	1946	934	905	1540	420	4500	1800	1000	800	6	
	396-444	GH550	14287	2352	1212	1178	2002	530	5763	2000	1000	1200	7	
Neutral	-ground a	rresters												
123	72-84	GN123	3285	586	278	273	462	115	1315	-	-	-	1	
	90-120	GN123	3285	586	278	273	462	120	1315	-	-	-	1	
4 4 5	0.4	014 45	0005		070	070	400	445	1015	••••	••••	••••		

145	84	GN145	3285	586	278	273	462	115	1315	-	-	-	1
	90-120	GN145	3285	586	278	273	462	120	1315	-	-	-	1
170	96-120	GN170	3285	586	278	273	462	120	1315	-	-	-	1
245	108-120	GN245	3285	586	278	273	462	120	1315	-	-	-	1
	132	GN245	3285	586	278	273	462	125	1315	-	-	-	1
	144	GN245	4432	774	378	359	616	155	1645	-	-	-	1

*) Sum of withstand voltages for empty units of arrester.

EXLIM P Technical data for housings

Figure 7

Line terminals

1HSA410 000-B Aluminium flag with other items in stainless steel

1HSA410 000-C Aluminium

1HSA410 000-D Stainless steel

Earth terminals

1HSA420 000-D Stainless steel

M16 bolts for connection to structure are not supplied by ABB. Required threaded grip length is 15-20 mm.

EXLIM P Shipping data

Rated voltage	Housing	Number of a	rresters per crate	•			
		One		Two		Three	
Ur		Volume	Gross	Volume	Gross	Volume	Gross
kV _{rms}		m ³	kg	m ³	kg	m³	kg
30-39	GV036	0.4	115	0.9	225	0.90	320
42-60	GH052	0.4	120	0.9	235	0.9	335
42-60	GV052	0.5	150	1.4	285	1.4	410
54-84	GV072	0.5	150	1.4	285	1.4	410
84-96	GV100	0.5	155	1.4	295	1.4	425
90-138	GH123	0.5	155	1.4	295	1.4	425
90-138	GV123	0.5	190	1.7	355	1.7	515
108-138	GM145	0.5	155	1.4	295	1.4	425
108-144	GH145	0.5	190	1.7	355	1.7	515
108-144	GV145	1.4	245	2.3	470	2.3	690
132-168	GH170	0.5	195	1.7	365	1.7	530
132-168	GV170	1.4	275	2.8	545	2.8	780
180-228	GH245	1.4	285	2.8	565	2.8	810
180	GV245	2.2	365	3.8	665	3.9	945
192-228	GV245	1.7	315	3.1	615	3.1	895
228-264	GM300	1.4	290	2.8	575	2.8	825
216	GH300	2.4	385	4.2	690	4.1	975
228-264	GH300	1.7	320	3.1	630	3.1	905
216	GV300	2.5	500	5.2	930	6.1	1315
228	GV300	2.1	460	5.2	890	5.2	1255
240-264	GV300	1.9	445	4.9	875	5.0	1240
258	GM362	2.4	390	4.2	705	4.1	995
264-288	GM362	2.2	375	3.8	690	3.9	985
258-264	GH362	2.5	505	5.2	940	6.1	1330
276-288	GH362	2.1	465	5.2	900	5.2	1270
258-288	GV362	3.2	565	6.3	1050	6.7	1500
330-360	GM420	2.2	410	4.1	770	4.2	1105
330-336	GH420	3.2	545	6.0	1010	6.0	1440
360-372	GH420	2.4	505	5.5	970	5.5	1375
378-420	GH420	2.2	490	3.8	960	5.3	1370
330-420	GV420	3.2	610	6.6	1150	7.0	1645
396	GM550	5.1	615	6.5	1100	6.5	1520
420-444	GM550	3.2	565	6.0	1045	6.0	1485
396-444	GH550	5.1	805	7.9	1330	7.9	1860
••••••	•••••••••••••••••••••••••••••••••••••••	·····		•••••	·····	·····	
Neutral-grour	d arresters						
72-78	GN123	0.4	150	1.4	285	1.4	410
84	GNxxx	0.4	150	1.4	285	1.4	410

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

0.4

0.5

155

190

GNxxx

GNxxx

90-132

144

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specifica-

tion. ABB reserves the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

1.4

1.7

295

355

1.4

1.7

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

425

515

Zinc Oxide Surge Arrester EXLIM T

Protection of switchgear, transformers and other equipment in high voltage systems against atmospheric and switching overvoltages.

- in areas with very high lightning intensity
- where grounding or shielding conditions are poor or incomplete
- for important installations

i

where energy requirements are very high (e.g. very long lines, capacitor protection).

Other data can be ordered on request. Please contact your local sales representative.

Brief performance data

System voltages (U _m)	245 - 800 kV
Rated voltages (U _r)	180 - 624 kV
Nominal discharge current (IEC)	20 kA _{peak}
Classifying current (ANSI/IEEE)	10/15/20 kA _{peak}
Discharge current withstand strength:	
High current 4/10 µs	150 kA _{peak}
Low current 2000 µs	2200 A _{peak}
Energy capability:	
Line discharge class (IEC)	Class 5
[2 impulses, (IEC Cl. 8.5.5)	15.4 kJ/kV (U _r)]
Fulfils/exceeds requirements of ANSI transmission-	
line discharge test for 800 kV systems.	
Short-circuit/Pressure relief capability	65 kA _{sym}
External insulation	Fulfils/exceeds
	standards
Mechanical strength:	
Specified long-term load (SLL)	7200 Nm
Specified short-term load (SSL)	18000 Nm
Service conditions:	
Ambient temperature	-50 °C to +45 °C
Design altitude	max. 1000 m
Frequency	15 - 62 Hz

EXLIM T Guaranteed protective data

Max. system voltage	Rated voltage	Max. conti operating	inuous voltage ¹⁾	TOV capa	bility ²⁾	Max. residual voltage with current wave							
		as per IEC	as per ANSI/IEEE		1	30/60 µs	1	1	8/20 µs	I	1	1	
U _m	Ur	U _c	мсоу	1 s	10 s	1 kA	2 kA	3 kA	5 kA	10 kA	20 kA	40 kA	
kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{rms}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	kV _{peak}	
245	180	144	144	205	194	346	356	363	381	396	428	466	
	192	154	154	218	207	369	380	387	406	423	457	497	
	198	156	160	225	213	381	392	399	419	436	471	512	
	210	156	170	239	226	404	415	423	444	462	499	543	
	216	156	174	246	233	415	427	435	457	476	514	559	
	219	156	177	249	236	421	433	441	463	482	521	567	
	228	156	180	259	246	438	451	459	482	502	542	590	
300	216	173	174	246	233	415	427	435	457	476	514	559	
	228	182	182	259	246	438	451	459	482	502	542	590	
	240	191	191	273	259	461	475	484	507	528	571	621	
	258	191	209	294	278	496	510	520	545	568	614	667	
	264	191	212	300	285	508	522	532	558	581	628	683	
362	258	206	209	294	278	496	510	520	545	568	614	667	
	264	211	212	300	285	508	522	532	558	581	628	683	
	276	221	221	314	298	531	546	556	583	608	656	714	
	288	230	230	328	311	554	569	580	609	634	685	745	
420	330	264	267	376	356	634	652	665	697	726	785	854	
	336	267	272	383	362	646	664	677	710	740	799	869	
	360	267	291	410	388	692	712	725	761	792	856	931	
	372	267	301	424	401	715	735	749	786	819	884	962	
	378	267	306	430	408	726	747	761	799	832	899	978	
	381	267	308	434	411	732	753	767	805	839	906	985	
	390	267	315	444	421	750	771	786	824	858	927	1013	
	396	267	318	451	427	761	783	798	837	872	941	1029	
	420	267	336	478	453	807	830	846	888	924	998	1091	
550	396	317	318	451	427	761	783	798	837	872	941	1029	
	420	336	336	478	453	807	830	846	888	924	998	1091	
	444	349	353	506	479	853	878	894	938	977	1060	1153	
800	588	470	470	670	635	1134	1167	1189	1247	1299	1402	1525	
	612	490	490	697	660	1180	1214	1237	1298	1351	1459	1587	
	624	499	499	711	673	1203	1238	1261	1323	1378	1488	1618	

More detailed information on the TOV capability and the protective characteristics are given in Publ. 1HSM 9543 13-01en.

1) The continuous operating voltages U_c (as per IEC) and MCOV (as per ANSI) differ only due to deviations in type test procedures. U_c has to be considered only when the actual system voltage is higher than the tabulated. Any arrester with Uc higher than or equal to the actual system voltage divided by $\sqrt{3}$ can be selected.

2) With prior duty equal to the maximum single-impulse energy stress (10.0 kJ/kV (Ur)).

Arresters with lower or higher rated voltages may be available on request for special applications.

EXLIM T Technical data for housings

Max. system voltage	Rated voltage	Housing	Creepage distance	External ins		Dimensions							
U _m	Ur			1.2/50 µs dry	50 Hz wet (60s)	60 Hz wet (10s)	250/2500 μs wet	Mass	A _{max}	в	С	D	Fig.
kV _{rms}	kV _{rms}		mm	kV _{peak}	kV _{rms}	kV _{rms}	kV _{peak}	kg	mm	mm	mm	mm	
245	180	BH245	6570	1172	556	546	924	270	2585	900	600	500	3
	192	BH245	6570	1172	556	546	924	270	2585	800	600	400	3
	198-228	BH245	6570	1172	556	546	924	275	2585	600	-	300	2
	180	BV245	7717	1360	656	632	1078	300	2915	900	600	500	3
	192-198	BV245	7717	1360	656	632	1078	300	2915	800	600	400	3
	210-228	BV245	7717	1360	656	632	1078	305	2915	600	-	300	2
300	228-240	BM300	6570	1172	556	546	924	285	2585	900	600	400	3
	258-264	BM300	6570	1172	556	546	924	295	2585	900	600	400	3
	216	BH300	7717	1360	656	632	1078	315	2915	1200	800	600	3
	228-264	BH300	7717	1360	656	632	1078	320	2915	900	600	400	3
	216-240	BV300	9855	1758	834	819	1386	395	3859	1600	800	1000	4
	258-264	BV300	9855	1758	834	819	1386	400	3859	1200	800	800	4
362	258	BM362	7717	1360	656	632	1078	330	2915	1400	800	700	3
	264-288	BM362	7717	1360	656	632	1078	335	2915	1200	800	600	3
	258-288	BH362	9855	1758	834	819	1386	410	3859	1600	800	1000	4
	258-276	BV362	12149	2134	1034	991	1694	465	4520	1600	800	1200	4
	288	BV362	12149	2134	1034	991	1694	470	4520	1600	800	1200	4
420	330-360	BM420	8864	1548	756	718	1232	385	3245	1200	800	600	3
	330-336	BH420	11002	1946	934	905	1540	460	4190	1600	800	1000	4
	360	BH420	11002	1946	934	905	1540	465	4190	1400	800	700	4
	372-420	BH420	11002	1946	934	905	1540	475	4190	1200	800	600	4
	330-336	BV420	13296	2322	1134	1077	1848	515	4850	1600	800	1000	4
	360-372	BV420	13296	2322	1134	1077	1848	530	4850	1600	800	1000	4
	378	BV420	13296	2322	1134	1077	1848	530	4850	1600	1000	650	4
	381-396	BV420	13296	2322	1134	1077	1848	530	4850	1400	800	700	4
	420	BV420	13296	2322	1134	1077	1848	540	4850	1200	800	600	4
550	396-420	BM550	11002	1946	934	905	1540	490	4500	2000	1000	1200	5
	444	BM550	11002	1946	934	905	1540	490	4500	1800	1000	800	5
	396-420	BH550	14287	2352	1212	1178	2002	590	5763	2000	1000	1200	6
	444	BH550	14287	2352	1212	1178	2002	595	5763	2000	1000	1200	6
800	On reques	t											

Neutral-ground arresters

245	108	BN245	3285	586	278	273	462	140	1315	-	-	-	1
	120-132	BN245	3285	586	278	273	462	145	1315	-	-	-	1
	144	BN245	4432	774	378	359	616	180	1645	-	-	-	1

 $^{\star)}$ Sum of withstand voltages for empty units of arrester.

EXLIM T Technical data for housings

Line terminals

1HSA410 000-A Aluminium

1HSA410 000-B Aluminium flag with other items in stainless steel

1HSA410 000-C Aluminium

1HSA410 000-D Stainless steel

Earth terminals

1HSA420 000-D Stainless steel

threaded grip length is 15-20 mm.

EXLIM T Shipping data

Rated voltage	Housing	Number of arresters per crate							
		One		Two		Three			
Ur		Volume	Gross	Volume	Gross	Volume	Gross		
kV _{rms}		m³	kg	m ³	kg	m³	kg		
180-228	BH245	1.4	320	2.8	635	2.8	925		
180-228	BV245	1.7	360	3.1	705	3.1	1025		
228-264	BM300	1.4	340	2.8	675	2.8	985		
216	BH300	2.2	410	3.8	755	3.8	1080		
228-264	BH300	1.7	375	3.1	730	3.1	1060		
216-240	BV300	2.9	540	5.7	1010	6.1	1435		
258-264	BV300	1.9	490	3.5	965	5.0	1375		
258	BM362	2.4	435	4.2	800	4.2	1140		
264-288	BM362	2.2	430	3.8	800	3.8	1145		
258-288	BH362	2.9	555	5.7	1040	6.1	1480		
258-288	BV362	3.2	620	6.3	1150	6.3	1500		
330-360	BM420	2.2	485	4.1	900	3.4	1300		
330-336	BH420	3.2	605	6.3	1130	6.3	1620		
360	BH420	2.4	570	4.2	1100	4.2	1570		
372-420	BH420	2.2	575	3.8	1120	3.8	1610		
330-336	BV420	3.2	665	6.6	1255	7.0	1805		
360-378	BV420	3.2	680	6.6	1280	7.0	1840		
381-396	BV420	2.4	640	6.1	1240	6.1	1780		
420	BV420	2.2	635	5.8	1225	5.9	1795		
396-420	BM550	5.1	710	6.5	1270	6.5	1795		
444	BM550	3.2	665	6.0	1215	6.0	1745		
396-444	BH550	5.1	805	7.9	1500	7.9	2105		

Neutral-ground arresters

		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	
108-132	BN245	0.5	180	1.4	345	1.4	500	
144	BN245	0.5	220	1.7	415	1.7	605	
	· · · · · · · • • · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		

Each crate contains a certain number of arrester units and accessories for assembly and erection. A packing list is attached externally on each crate.

Each separate crate is numbered and the numbers of all crates and their contents are listed in the shipping specifica-

tion. ABB reserves the right to pack arresters in the most effective/economic combination. Alternate or non-standard crates may involve additional charges.

The table above is to be seen as an approximation and specific data for deliveries may differ from the values given.

EXCOUNT Surge arrester monitors matched with the surge arresters

With our state-of-the-art product family EXCOUNT, ABB has the full range of counters and monitors to cater for all customer needs - from simple discharge operation count (EXCOUNT-A) through leakage current measurement (EXCOUNT-I) to on-line monitoring and diagnostics (EXCOUNT-II).

Resistive leakage current	-	-	res
			(also available without)
Display	6-digit, electromechanical counter	6 digit, Ch-LCD	Remote reading, PC connectivity
Power supply	Not applicable	Solar panel	Solar panel and field probe

Impulse amplitude

Total current

EXCOUNT Monitoring the health of surge arresters

Well-designed and tested, ABB surge arresters are maintenance-free and can reasonably be expected to have a long service life. Nevertheless, considering the type of expensive equipment which an arrester is protecting, together with how costly and devastating an unplanned power outage can be, there are good reasons for "monitoring" the condition of arresters.

Surge arresters present a high impedance at normal service voltage such that they behave as an insulator for the majority of their life. This is necessary to assure a long life for the arrester itself as well as stability of the electrical network as a whole. A deterioration of an arrester's insulating properties is therefore important to detect early before the situation becomes acute.

In order to truly evaluate the health of an arrester, testing of the kind made as routine during manufacture would need to be performed. However, such testing is not practical to make in the field and removal of the arrester to a HV lab is deemed uneconomic. Instead some kind of in-service diagnostic is required.

Surge registration

The primary reason for the use of surge counters on modern gapless ZnO arresters is to check if a particular transmission line or phase suffers from an exceptionally high number of overvoltages leading to arrester operation — lightning faults on a line, for example. If this is the case, whilst it validates the need for the arresters, use of some preventative countermeasures may be warranted to limit the number of surges. A sudden increase in the counting rate may also indicate an internal arrester fault, in which case the arrester should be investigated further.

However, simple surge counters tell only part of the story, as they only register the number of surges according to their operating characteristic. The user therefore has no way of telling the magnitude of the surge and if it was significant, nor when it occurred and if it was coincident with a system event.

Leakage current measurement

Surge counters can be complimented with the facility to measure leakage currents (total and/or resistive), with the intention of monitoring and diagnosing the condition of the arrester and its state of fitness for continued service. However it is important to understand the validity of the information provided.

At continuous operating voltage (U_c), a metal-oxide varistor acts as a capacitor, leading to a predominantly capacitive component of current and a significantly smaller resistive part. For a complete surge arrester, the capacitive current is further dependent on stray capacitances, pollution currents on the insulator surface, number of varistor columns in parallel and the actual operating voltage. Meanwhile the small resistive component of the leakage current is temperature and voltage dependant.

Since the capacitive component of the current dominates so greatly, the total leakage current measured on a basic mAmeter will be very sensitive to the installation; making interpretation of the readings difficult. Furthermore, the capacitive current does not change significantly due to deterioration of the voltage-current characteristic of the surge arrester. Consequently, measurement of capacitive current cannot reliably indicate the condition of metal-oxide arresters. Nevertheless, increasing values may be of some use in indicating that cleaning of the insulators is necessary.

EXCOUNT Monitoring the health of surge arresters

Instead, it is generally recognized (IEC 60099-5) that the only reliable indicator for the condition of a gapless arrester that can be assessed during normal service is to measure the resistive component of the leakage current (or estimate it from the 3rd harmonic). The obtained value may then be compared with the maximum allowable resistive current as given by the manufacturer under prevailing service conditions i.e. temperature and applied voltage.

Remote reading with EXCOUNT-II

If a metal-oxide varistor ages or is damaged by impulses etc, the arrester resistive leakage current, and hence power losses, increase permanently. This may result in an increase in temperature, which in turn, increases the leakage current and so on until a so-called thermal runway occurs. Early detection of a possible harmful increase may prevent a failure and subsequent unplanned shutdown. Hence, to provide true diagnostics, a good monitor must be able to detect the arrester leakage current and isolate and measure the resistive component flowing internally.

Diagnostic plan

A surge arrester does not contain any moving parts or items that can break. Consequently there is nothing to maintain, adjust, correct or repair, which is why there is normally no need to perform any form of periodical checking or monitoring. In general, a correctly chosen and installed arrester is maintenance free during its entire lifetime. A correctly chosen arrester in this context means that its electrical and mechanical characteristics are matched to actual service conditions.

Nonetheless, since external factors can place stresses on the arrester, potentially leading to its deterioration and ultimate overload, it may be prudent to draw up a schedule for regular checks. Such consideration is all the more important if an unplanned outage is unacceptable for reasons of system stability or economics. The older the arrester, the more regular these checks may need to be, since the statistical risk for overload increases with age.

As a guide, the following strategy is proposed to be made at regular intervals as required and determined by site availability and importance:

- Visual inspection and possible cleaning
- Diagnostics in advance of the designated lighting season and thereafter following periods with bad weather conditions.
- Diagnostics after special fault conditions causing flashover in the network or TOV's of high amplitude and/or long duration.

Because of their nature, old-style gapped arresters should be removed as soon as possible as part of a scheduled replacement program. Their age and inherent design does not warrant detailed evaluation. Early models of gapless arresters may require additional visual checks to look for signs of mechanical or physical deterioration as well as monitoring of the internals. Newly purchased arresters can also benefit from diagnostic monitoring right from first installation since this permits easy trend analysis to detect potential deterioration later on in its service life.

EXCOUNT When safety comes first

EXCOUNT draws upon over 70 years of experience by ABB in the development of arresters and associated accessories. Safety, functionality and longevity are key elements which are given priority in selection and design of components. In stark contrast to many other competing products, EXCOUNT has not neglected short-circuit safety which lies inherent in the design concept.

The EXCOUNT family is characterized by:

Highest personnel safety

- Explosion-proof for short-circuit currents up to 65 kA.
- Same safe performance as ABB arresters.

Negligible residual voltage

- Does not reduce protection margins.
- Minimized risk for injury in case of accidental contact during surges.

Maintenance free

- Sealed components.
- Requires no external power supply.

Long life

Moulded components, non-sensitive to humidity or temperature variations.

Universal application

- All makes and types of gapless surge arresters.
- All weather and temperature conditions.

Design

The single-turn primary ensures that the voltage drop across

the counter is negligible, even at the highest impulse currents encountered in service. This leads to added personnel safety and no increase in the protection level of the arrester. Since no gaps or series impedance are used, there is no risk of internal arcing and consequent explosive failure in the event of a short-circuit following an arrester failure.

One further common feature with the entire EXCOUNT family is that all internal components are fully encapsulated in polymer. This provides sealing to IP67, which ensures no harmful ingress of dust or moisture as well as providing personal safety through complete protection against contact with the internals.

EXCOUNT is available in different variants, depending on the user's needs: simple, basic or extensive.

Surge counter EXCOUNT-A

EXCOUNT-A is a simple surge counter with all the essentials for easy installation and highest personnel safety. The counter is maintenance free; powered by the surge current and suitable for all weather and temperature conditions.

Design features

EXCOUNT-A comprises an impulse current transformer with a single turn primary in the form of an insulated stranded-copper cable to be connected in the earth circuit of an arrester. The cable is fitted at both ends with tinned-copper cable lugs. The secondary circuit is connected to a mechanical counting relay and all components are totally sealed in polymer. A suitably angled window permits easy reading of the 6-digit cyclometer-type counter.

Surge registration

The counting threshold for EXCOUNT-A is adapted for gapless surge arresters. Only pulses that are considered significant to the arrester capability and life are therefore registered.

Maintenance free

A robust aluminium casing is fitted over the encapsulated internals, which makes EXCOUNT-A non-sensitive to humidity or temperature variations. It can be exposed to all environments regardless of weather and temperature conditions. The current transformer secondary output is sufficient for driving the counter and an external supply source is hence not needed.
EXCOUNT-A Technical data

General

Item number	LB910 007-A
Climatic conditions	Sealed water-tight design, IP67
Short-circuit capability	65 kA according to IEC 60099-4
Power supply	Impulse current

Surge registration

Minimum co	ounting threshold	1.6 kA
(8/20 µs)		

Stepping criteria

Dimensions

Surge counter EXCOUNT-I with mA-meter

EXCOUNT-I is a surge counter with basic leakage current measurement function. The counter provides a number of unique features such as short-circuit safety and a well proven electronic display which is easy to read, even in direct sunlight. EXCOUNT-I is specially designed for use with all makes and types of gapless arresters and in diverse environments.

Design features.

As with all surge counters from ABB, EXCOUNT-I does not negatively affect the residual voltage of the arrester thanks to the use of a single turn primary. EXCOUNT-I is housed in a sealed, weather-proof case, suitable for outdoor use and proven to match the short circuit capability of the arresters. EXCOUNT-I has been designed for highest personal safety and has been successfully short circuit tested at 65 kA.

EXCOUNT-I requires no external power supply as it incorporates its own internal power source in the form of a highefficiency capacitor charged by solar cells. The electronic display is of Cholesteric Liquid Crystal Display type. This ensures highest readability, even in direct sunlight. The display is Bi-stable, which means that power is only required during refresh of the display.

Surge registration

EXCOUNT-I registers the surge each time the arrester has discharged a current over 10 A. The accumulated number of surges is continuously shown on the electronic display.

Leakage current measurement

ABB's unique design ensures that total leakage current through the arrester can be measured without risking personnel safety.

The measurement is initiated by triggering a light sensitive diode using a standard laser pointer. This will initiate EXCOUNT-I to start measuring the total leakage current for several cycles and shortly thereafter display the average value (in mA). The counter will then automatically return to its normal state and display number of impulses. Thus, the measurement can be made at a discreet distance without coming into direct contact with the equipment.

Maintenance free

EXCOUNT-I is a maintenance free product in outdoor applications. The display and solar panels might however need to be wiped off before measurement in extremely polluted conditions.

EXCOUNT-I Technical data

General

Climatic conditions	Sealed water-tight design, IP67
Short-circuit capability	65 kA according to IEC 60099-4
Power supply	Built-in solar cells
	(battery alternative for indoor use)

Surge registration

Minimum counting threshold (8/20 µs)	10 A
Surge counting memory capacity	999999 registrations (wrap-around)
Time resolution	< 0.5 s

Leakage current measurement

Measuring range of total	0.1 - 50 mA _{peak}
leakage current	
Measuring frequency range	48 - 62 Hz
Laser pointer wavelength	630 nm

EXCOUNT-I versions

EXCOUNT-I can be supplied with an output connection (auxiliary contact) for interfacing to external signalling equipment. Versions with only surge counting function are also available.

Model	Surge counting	Leakage current measurement	Auxiliary contact	Laser pointer included
1HSA440000-C	Yes	-	-	-
1HSA440000-E	Yes	-	Yes	-
1HSA440000-J	Yes	Yes	-	Yes
1HSA440000-L	Yes	Yes	Yes	Yes

The auxiliary pulse contact is intented for use with AC signal voltage only.

Dimensions

Auxiliary contact 1HSA440000-E and 1HSA440000-L

Surge arrester monitor EXCOUNT-II

EXCOUNT-II is our top-of-the line product combining outstanding looks with the most extensive and powerful features. Included are a variety of surge counting features together with all the essential leakage current measurement functions. EXCOUNT-II enables users to keep track of overvoltages in the network as well as providing state-of-the art on-line condition monitoring of arresters.

Design features

EXCOUNT-II is a unique monitoring system, which can be used as an aid to assess the health of the entire substation by monitoring surges transmitted in and out of the network. Each surge arrester is fitted with a sensor, which detects the total number of discharges, the surge amplitude, date and time of occurrence, as well as the leakage current through the arrester. The measurements can be remotely read when convenient with the aid of a hand-held transceiver (and optional external antenna).

Remote reading provides increased personnel safety compared with conventional counters. With a communication distance of up to 60 m (120 m with external antenna), the person does not necessarily have to even be inside the substation perimeter, so saving the need to arrange entry permits or have electrically trained personnel perform the work. The measured data can then be transferred to a computer for statistical analysis. Included with EXCOUNT-II is specially designed software which facilitates download of the measured data from the transceiver and permits analysis and reporting of the collected information.

Surge registration

EXCOUNT-II does more than just count surges. It also registers the date and time as well as amplitude of the surge each time the arrester has discharged a current over 10 A. Time and amplitude measurement gives the user better information about overvoltages in the network and the operation of the arrester.

Leakage current measurement and condition monitoring

EXCOUNT-II gives the user the possibility to measure both the total leakage current as well as the resistive component of the current through the arrester. Measurement of the resistive current gives a good indication of the arrester's condition and fitness for continued service. The measurement method employed is based on third-harmonic analysis which is considered the most reliable measuring method for condition monitoring according to IEC 60099-5.

Safe and secure

The sensor is housed in a sealed, weather-proof case, suitable for outdoor use and proven to match the short-circuit capability of the arrester to which it is connected. The sensor requires no external power supply as it incorporates its own internal power source in the form of a high-efficiency capacitor automatically charged by solar cells and electric field probe.

EXCOUNT-II Technical data

General

Climatic conditions	Sealed water-tight design, IP67
Short-circuit capability	65 kA according to IEC 60099-4
Power supply	Built-in solar cells and field probe
	(battery alternative for indoor use)

Surge registration

Minimum counting threshold	10 A
(8/20 μs)	
Amplitude classification	10 - 99 A
(8/20 µs)	100 - 999 A
	1000 - 4999 A
	5000 - 9999 A
	> 10000 A
Time stamp	Yes
Time resolution	< 0.5 s
Memory capacity	1000 registrations (wrap-around)

Leakage current measurement

Measuring range of total	0.2 - 12 mA _{peak}
leakage current	pour
Measuring range of resistive	10 - 2000 μA
leakage current (peak level)	
Measuring frequency range	48 - 62 Hz

EXCOUNT-II versions

EXCOUNT-II are available for two different frequencies depending on national regulations. Contact ABB for guidance.

Sensor

Model	Frequency
1HSA441 000-A	for 868.35 MHz
1HSA441 000-C	for 916.50 MHz

Sensors for inverted mounting

Model	Frequency
1HSA441 000-D	for 868.35 MHz
1HSA441 000-E	for 916.50 MHz

Transceiver model 1

Application: Measuring total leakage current and surge data

Model	Frequency
1HSA442 000-C	for 868.35 MHz
1HSA442 000-E	for 916.50 MHz

Transceiver model 2

Application: Measuring total leakage current, resistive leakage current and surge data.

Model	Frequency
1HSA442 000-A	for 868.35 MHz
1HSA442 000-D	for 916.50 MHz

External antenna

Model	Frequency
1HSA446 000-A	for 868.35 MHz
1HSA446 000-B	for 916.50 MHz

EXCOUNT-II Dimensions

Sensor

Transceiver

External antenna

Purchase order

Project		Handled by, e-mail or fax		Tender reference no (if any)
Buyer			Date (yyyy-mm-dd)	Buyer reference
End user				End user reference (if any)
Shipping terms	Destination			Means of transport
Freight forwarder (if FCA or	i · FOB)			Payment terms
Goods marking Delivery address No Yes		1		
Inspection of routine tests	Routine test standard	Documentation language	Rating plate language	Currency

Items

Quantity	Arrester type designation		
Color (porcelain)	Line terminal	Earth terminal	Insulating base
Delivery date (EXW) yyyy-mm-dd	1	Unit price (if known)	Total price (if known)

Quantity	Arrester type designation		
Color (porcelain)	Line terminal	Earth terminal	Insulating base
Delivery date (EXW) yyyy-mm-dd		Unit price (if known)	Total price (if known)

Quantity	Arrester type designation		
Color (porcelain)	Line terminal	Earth terminal	Insulating base
Delivery date (EXW) yyyy-mm-dd		Unit price (if known)	Total price (if known)

Quantity	Arrester type designation		
Color (porcelain)	Line terminal	Earth terminal	Insulating base
Delivery data (EX)A() years mm.dd		Linit price (if known)	Total price (if known)

It is recommended that the following form is used when ordering EXLIM/PEXLIM surge arresters and accessories. Send to fax: +46 (0)240 179 83 or mail to *ordersa.swg@se.abb.com*.

Contact us

ABB AB **High Voltage Products** Surge Arresters SE-771 80 Ludvika, Sweden Phone: +46 (0)240 78 20 00 Fax: +46 (0)240 179 83 E-Mail: arresters.div@se.abb.com

www.abb.com/arrestersonline

©Copyright 2009 ABB All rights reserved

NOTE! ABB AB is working continuously to improve the products. We therefore reserve the right to change designs, dimensions and data without prior notice.

